Search results

1 – 10 of 115
Article
Publication date: 20 March 2024

Shufeng Tang, Yongsheng Kou, Guoqing Zhao, Huijie Zhang, Hong Chang, Xuewei Zhang and Yunhe Zou

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power…

Abstract

Purpose

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power transmission towers.

Design/methodology/approach

A connecting rod type gripper has been designed to achieve stable grasping of angle steel. Before grasping, use coordination between structures to achieve stable docking and grasping. By using the alternating movements of two claws and the middle climbing mechanism, the climbing and obstacle crossing of the angle steel were achieved.

Findings

Through a simple linkage mechanism, a climbing robot has been designed, greatly reducing the overall mass of the robot. It can also carry a load of 1 kg, and the climbing mechanism can perform stable climbing. The maximum step distance of the climbing robot is 543 mm, which can achieve the crossing of angle steel obstacles.

Originality/value

A transmission tower climbing mechanism was proposed by analyzing the working environment. Through the locking ability of the screw nut, stable clamping of the angle steel is achieved, and a pitch mechanism is designed to adjust the posture of the hand claw.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 April 2024

Hesham Mohsen Hussein Omar, Mohamed Fawzy Aly Mohamed and Said Megahed

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper…

Abstract

Purpose

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper studies the applicability of different CG designs and the efficiency of some design parameters.

Design/methodology/approach

After reviewing a number of different papers, two designs were selected for a number of exploratory experiments. Using design of experiments (DOE) techniques to identify important design parameters. Finally, the efficiency of the parts was investigated.

Findings

The research finds that a simpler design sacrifices some effectiveness in exchange for a remarkable decrease in production cost. Decreasing infill percentage of previous designs and 3D printing them, out of TPU, experimenting with different parameters yields functional products. Moreover, the paper identified some key parameters for further optimization attempts of such prototypes.

Research limitations/implications

The cost of conducting FFF experiments for TPU increases dramatically with product size, number of parameters studied and the number of experiments. Therefore, all three of these factors had to be kept at a minimum. Further confirmatory experiments encouraged.

Originality/value

This paper addresses an identified need to investigate applications of FFF and TPU in manufacturing functional efficient flexible mechanisms, grippers specifically. While most research focused on designing for increased performance, some research lacks discussion on design philosophy, as well as manufacturing issues. As the needs for flexible grippers vary from high-performance grippers to lower performance grippers created for specific functions/conditions, some effectiveness can be sacrificed to reduce cost, reduce complexity and improve applicability in different robotic assemblies and environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 April 2023

Deepak Doreswamy, Abhijay B.R., Jeane Marina D’Souza, Sachidananda H.K. and Subraya Krishna Bhat

Soft actuators using pneumatic-chamber (PneuNet)-based designs have been of interest in the area of soft robotics with scope of application in the area of biomedical assistance…

Abstract

Purpose

Soft actuators using pneumatic-chamber (PneuNet)-based designs have been of interest in the area of soft robotics with scope of application in the area of biomedical assistance and smart agriculture. Researchers have attempted to investigate multiple chambers in parallel to examine their deformation characteristics. However, there is a lacuna for investigation of the deformation characteristics of four parallel chambered soft actuators. The purpose of this study is to comprehensively investigate the different possible actuation scenarios and the resulting bending/deformation behaviours.

Design/methodology/approach

Therefore, in this study, a four-chambered PneuNet actuator is numerically investigated to evaluate the effects of pressurization scenarios and pressure levels on its performance, operating reaching and working volume.

Findings

The results of this study revealed that two-adjacent chamber equal pressurization and three-chamber pressurizations result in increased bending. However, two-opposite chamber pressurization reduces the bending angle with pressure levels in the lower pressure chamber. The maximum bending angle of 97° was achieved for single-chamber pressurization of 300 kPa. The two-adjacent chamber unequal pressurization can achieve a sweeping motion in the actuator along with bending. The working volume and reaching capability analysis revealed that the actuator can reach around 71% of the dimensional operating space.

Practical implications

The results provide fundamental guidance on the output nature of motion which can be obtained under different pressurization scenarios using the four-chambered design soft actuator, thereby making it a practical guide for implementation for useful applications.

Originality/value

The comprehensive pressurization scenarios and pressure level variations reported in this study will serve as fundamental operating guidelines for any practical implementation of the four-chambered PneuNet actuator.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 8 August 2022

Chengyao Xin

This paper aims to present a case study of virtual-reality-based product demonstrations featuring items of furniture. The results will be of use in further design and development…

Abstract

Purpose

This paper aims to present a case study of virtual-reality-based product demonstrations featuring items of furniture. The results will be of use in further design and development of virtual-reality-based product demonstration systems and could also support effective student learning.

Design/methodology/approach

A new method was introduced to guide the experiment by confirming orthogonal arrays. User interactions were then planned, and a furniture demonstration system was implemented. The experiment comprised two stages. In the evaluation stage, participants were invited to experience the virtual-reality (VR)-based furniture demonstration system and complete a user experience (UX) survey. Taguchi-style robust design methods were used to design orthogonal table experiments and planning and design operation methods were used to implement an experimental display system in order to obtain optimized combinations of control factors and levels. The second stage involved a confirmatory test for the optimized combinations. A pilot questionnaire was first applied to survey demonstration scenarios that are important to customers.

Findings

The author found in terms of furniture products, product interactive display through VR can achieve good user satisfaction through quality design planning. VR can better grasp the characteristics of products than paper catalogs and website catalogs. And VR can better grasp the characteristics of products than online videos. For “interactive inspection”, “function simulation”, “style customization” and “set-out customization” were the most valuable demonstration scenarios for customers. The results of the experiment confirmed that the “overall rating”, “hedonic appeal” and “practical quality” were the three most important optimized operating methods, constituting a benchmark of user satisfaction.

Originality/value

The author found that it is possible to design and build a VR-based furniture demonstration system with a good level of usability when a suitable quality design method is applied. The optimized user interaction indicators and implementation experience for the VR-based product demonstration presented in this study will be of use in further design and development of similar systems.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 29 February 2024

Robert Bogue

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Abstract

Purpose

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Design/methodology/approach

Following an introduction, which identifies key challenges facing the industry, this paper discusses robotic applications in warehouses, followed by sections covering transportation and delivery and conclusions.

Findings

The logistics industry faces a number of challenges that drive technological and operational changes. Robots are already playing a role within the warehouse sector and more complex applications have recently arisen from developments in artificial intelligence-enabled vision technology. In the transportation sector, autonomous trucks are being developed and trialled by leading manufacturers. Many major logistics companies are involved and limited services are underway. Last-mile delivery applications are growing rapidly, and trials, pilot schemes and commercial services are underway in Europe, the USA and the Far East. The Chinese market is particularly buoyant, and in 2019, a delivery robot was launched that operates on public roads, based on Level-4 autonomous driving technology. The drone delivery sector has been slower to develop, in part due to regulatory constraints, but services are now being operated by drone manufacturers, retailers and logistics providers.

Originality/value

This paper provides details of existing and future applications of robots in the logistics industry.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 March 2024

Yahao Wang, Zhen Li, Yanghong Li and Erbao Dong

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new…

Abstract

Purpose

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new constraint method to improve the performance of the sampling-based planner.

Design/methodology/approach

In this work, a constraint method (TC method) based on the idea of cross-sampling is proposed. This method uses the tangent space in the workspace to approximate the constrained manifold pattern and projects the entire sampling process into the workspace for constraint correction. This method avoids the need for extensive computational work involving multiple iterations of the Jacobi inverse matrix in the configuration space and retains the sampling properties of the sampling-based algorithm.

Findings

Simulation results demonstrate that the performance of the planner when using the TC method under the end-effector constraint surpasses that of other methods. Physical experiments further confirm that the TC-Planner does not cause excessive constraint errors that might lead to task failure. Moreover, field tests conducted on robots underscore the effectiveness of the TC-Planner, and its excellent performance, thereby advancing the autonomy of robots in power-line connection tasks.

Originality/value

This paper proposes a new constraint method combined with the rapid-exploring random trees algorithm to generate collision-free trajectories that satisfy the constraints for a high-dimensional robotic system under end-effector constraints. In a series of simulation and experimental tests, the planner using the TC method under end-effector constraints efficiently performs. Tests on a power distribution live-line operation robot also show that the TC method can greatly aid the robot in completing operation tasks with end-effector constraints. This helps robots to perform tasks with complex end-effector constraints such as grinding and welding more efficiently and autonomously.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 January 2024

Prihana Vasishta, Navjyoti Dhingra and Seema Vasishta

This research aims to analyse the current state of research on the application of Artificial Intelligence (AI) in libraries by examining document type, publication year, keywords…

Abstract

Purpose

This research aims to analyse the current state of research on the application of Artificial Intelligence (AI) in libraries by examining document type, publication year, keywords, country and research methods. The overarching aim is to enrich the existing knowledge of AI-powered libraries by identifying the prevailing research gaps, providing direction for future research and deepening the understanding needed for effective policy development.

Design/methodology/approach

This study used advanced tools such as bibliometric and network analysis, taking the existing literature from the SCOPUS database extending to the year 2022. This study analysed the application of AI in libraries by identifying and selecting relevant keywords, extracting the data from the database, processing the data using advanced bibliometric visualisation tools and presenting and discussing the results. For this comprehensive research, the search strategy was approved by a panel of computer scientists and librarians.

Findings

The majority of research concerning the application of AI in libraries has been conducted in the last three years, likely driven by the fourth industrial revolution. Results show that highly cited articles were published by Emerald Group Holdings Ltd. However, the application of AI in libraries is a developing field, and the study highlights the need for more research in areas such as Digital Humanities, Machine Learning, Robotics, Data Mining and Big Data in Academic Libraries.

Research limitations/implications

This study has excluded papers written in languages other than English that address domains beyond libraries, such as medicine, health, education, science and technology.

Practical implications

This article offers insight for managers and policymakers looking to implement AI in libraries. By identifying clusters and themes, the article would empower managers to plan ahead, mitigate potential drawbacks and seize opportunities for sustainable growth.

Originality/value

Previous studies on the application of AI in libraries have taken a broad approach, but this study narrows its focus to research published explicitly in Library and Information Science (LIS) journals. This makes it unique compared to previous research in the field.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 27 November 2023

Timothy Bartram, Jillian Cavanagh, Beni Halvorsen, Patricia Pariona-Cabrera, Jessica Borg, Matthew Walker and Narges Kia

Aged-care work has become an extreme form of work. Anti-violence HRM, comprising practices to combat workplace violence, is important in an industry with widespread violence. In…

Abstract

Purpose

Aged-care work has become an extreme form of work. Anti-violence HRM, comprising practices to combat workplace violence, is important in an industry with widespread violence. In this paper, we employ social exchange theory to better understand the effect of anti-violence HRM and trust in the manager on perceived nurse and PCA cynicism working in Australian aged care facilities and their subsequent intention to leave.

Design/methodology/approach

This study used a mixed method with two stages. Stage 1 comprised semi-structured interviews with 10 managers and 50 nurses and PCAs working in Australian aged care facilities. Stage 2 comprised a survey of nurses and PCAs with a total of 254 completed responses in Time 1 (first wave) and 225 completed responses in Time 2 (second wave).

Findings

We tested three hypotheses and reported that interestingly anti-violence HRM was positively associated with organisational cynicism. Organisational cynicism mediated the relationship between anti-violence HRM and intention to leave. Worker trust in the manager moderated the relationship between anti-violence HRM practices and organisational cynicism, such that high levels of trust in the manager increased the effect of anti-violence HRM practices to reduce organisational cynicism and subsequently reduce intention to leave.

Originality/value

We find evidence that in aged care, workers' trust in their managers is critical for effectual anti-violence HRM. We argue that implementation of HRM practices may be more complex in extreme work settings. It is crucial to study HRM in situ and understand the root of social exchange(s) as a foundation for HRM to influence employee attitudes and behaviour.

Details

Personnel Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0048-3486

Keywords

1 – 10 of 115