Search results

1 – 10 of 10
Open Access
Article
Publication date: 28 February 2023

Mohammed Jawad Abed and Anis Mhalla

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Abstract

Purpose

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Design/methodology/approach

In this study, the associated probability is calculated based on the solar power generation capacity levels and outages conditions. Then, based on this probability, dependability indices like average energy not supplied (AENS), expected energy not supplied and loss of load expectations (LOLE) are computed, also, another indices have been computed such as (customer average interruption duration index (CAIDI), system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI)) addressing by affected customers with distribution networks reliability assessment, including PV. On the basis of their dependability indices and active power flow, several PV solar modules installed in several places are analyzed. A mechanism for assessing the performance of the grid's integration of renewable energy sources is also under investigation.

Findings

The findings of this study based on data extracted form a PV power plant connected to the power network system in Diyala, Iraq 132 kV, attempts to identify the system's weakest points in order to improve the system's overall dependability. In addition, enhanced reliability indices are given for measuring solar PV systems performance connected to the grid and reviewed for the benefit of the customers.

Originality/value

The main contributions of this study are two methods for determining the reliability of PV generators taking into consideration the system component failure rates and the power electronic component defect rates in a PV system which depend on the power input and the power loss using electrical transient analysis program (ETAP) program.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 11 October 2023

Abdulwasa B. Barnawi, Abdull Rahman A. Alfifi, Z.M.S. Elbarbary, Saad Fahed Alqahtani and Irshad Mohammad Shaik

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level…

Abstract

Purpose

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level inverters have become unprofitable for high-power applications. Multilevel inverters (MLIs) are used to enhance the output waveform characteristics (i.e. low THD) and to offer various inverter topologies and switching methods.

Design/methodology/approach

MLIs are upgraded versions of two-level inverters that offer more output levels in current and voltage waveforms while lowering the dv/dt and di/dt ratios. This paper aims to review and compare the different topologies of MLI used in high-power applications. Single and multisource MLI's working principal and switching states for each topology are demonstrated and compared. A Simulink model system integrated using detailed circuit simulations in developed in MATLAB®–Simulink program. In this system, a constant voltage source connected to MLI to feed asynchronous motor with squirrel cage rotor type is used to demonstrate the efficacy of the MLI under different varying speed and torque conditions.

Findings

MLI has presented better control and good range of system parameters than two-level inverter. It is suggested that the MLIs like cascade-five-level and NPC-five-level have shown low current harmonics of around 0.43% and 1.87%, respectively, compared to two-level inverter showing 5.82%.

Originality/value

This study is the first of its kind comparing the different topologies of single and multisource MLIs. This study suggests that the MLIs are more suitable for high-power applications.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 11 August 2022

Li Ji, Yiwei Zhang, Ruifeng Shi, Limin Jia and Xin Zhang

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation…

Abstract

Purpose

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation vehicles and service facilities with a clean electricity supply and form a new model of a source-grid-load-storage-charge synergistic highway-PV-WT integrated system (HPWIS). This paper aims to improve the flexibility index of highways and increase CO2 emission reduction of highways.

Design/methodology/approach

To maximize the integration potential, a new energy-generation, storage and information-integration station is established with a dynamic master–slave game model. The flexibility index is defined to evaluate the system ability to manage random fluctuations in power generation and load levels. Moreover, CO2 emission reduction is also quantified. Finally, the Lianhuo Expressway is taken as an example to calculate emission reduction and flexibility.

Findings

The results show that through the application of the scheduling strategy to the HPWIS, the flexibility index of the Lianhuo Expressway increased by 29.17%, promoting a corresponding decrease in CO2 emissions.

Originality/value

This paper proposed a new model to capture the evolution of the HESS, which provides highway transportation vehicles and service facilities with a clean electricity supply and achieves energy transfer aided by an energy storage system, thus forming a new model of a transportation energy system with source-grid-load-storage-charge synergy. An evaluation method is proposed to improve the air quality index through the coordination of new energy generation and environmental conditions, and dynamic configuration and dispatch are achieved with the master–slave game model.

Open Access
Article
Publication date: 6 May 2021

Zakaria Mohamed Salem Elbarbary and Mohamed Abdullrahman Alranini

Silicon photovoltaics technology has drawbacks of high cost and power conversion efficiency. In order to extract the maximum output power of the module, maximum power point (MPP…

9588

Abstract

Purpose

Silicon photovoltaics technology has drawbacks of high cost and power conversion efficiency. In order to extract the maximum output power of the module, maximum power point (MPP) is used by implying the nonlinear behavior of I-V characteristics. Different techniques are used regarding maximum power point tracking (MPPT). The paper aims to review the techniques of MPPT used in PV systems and review the comparison between Perturb and Observe (P&O) method and incremental conductance (IC) method that are used to track the maximum power and gives a comparative review of all those techniques.

Design/methodology/approach

A study of MPPT techniques for photovoltaic (PV) systems is presented. Matlab Simulink is used to find the MPP using P&O simulation along with IC simulation at a steady temperature and irradiance.

Findings

MATLAB simulations are used to implement the P&O method and IC method, which includes a PV cell connected to an MPPT-controlled boost converter. The simulation results demonstrate the accuracy of the PV model as well as the functional value of the algorithms, which has improved tracking efficiency and dynamic characteristics. P&O solution gave 94% performance when configured. P&O controller has a better time response process. As compared to the P&O method of tracking, the incremental conductance response rate was significantly slower.

Originality/value

In PV systems, MPPT techniques are used to optimize the PV array output power by continuously tracking the MPP under a variety of operating conditions, including cell temperature and irradiation level.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 14 April 2023

Gideon Daniel Joubert and Atanda Kamoru Raji

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this…

Abstract

Purpose

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this study aims to develop an adaptable grid code-guided renewable power plant (RPP) control real-time simulation testbed, tailored to South African grid code requirements to study grid-integrated RE’s behaviour concerning South Africa’s unique conditions.

Design/methodology/approach

The testbed is designed using MATLAB’s Simulink and live script environments, to create an adaptable model where grid, RPP and RPP guiding grid codes are tailorable. This model is integrated with OPAL-RT’s RT-LAB and brought to real-time simulation using OPAL-RT’s OP4510 simulator. Voltage, frequency and short-circuit event case studies are performed through which the testbed’s abilities and performance are assessed.

Findings

Case study results show the following. The testbed accurately represents grid code voltage and frequency requirements. RPP point of connection (POC) conditions are consistently recognized and tracked, according to which the testbed then operates simulated RPPs, validating its design. Short-circuit event simulations show the simulated wind farm supports POC conditions relative to short-circuit intensity by curtailing active power in favour of reactive power, in line with local grid code requirements.

Originality/value

To the best of the authors’ knowledge, this is the first design of an adaptable grid code-guided RPP control testbed, tailored to South African grid code requirements in line with which RPP behavioural and grid integration studies can be performed.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 23 May 2023

Roland Ryndzionek, Michal Michna, Filip Kutt, Grzegorz Kostro and Krzysztof Blecharz

The purpose of this paper is to provide an analysis of the performance of a new five-phase doubly fed induction generator (DFIG).

Abstract

Purpose

The purpose of this paper is to provide an analysis of the performance of a new five-phase doubly fed induction generator (DFIG).

Design/methodology/approach

This paper presents the results of a research work related to five-phase DFIG framing, including the development of an analytical model, FEM analysis as well as the results of laboratory tests of the prototype. The proposed behavioral level analytical model is based on the winding function approach. The developed DFIG model was used at the design stage to simulate the generator’s no-load and load state. Then, the results of the FEM analysis were shown and compared with the results of laboratory tests of selected DFIG operating states.

Findings

The paper provides the results of analytical and FEM simulation and measurement tests of the new five-phase dual-feed induction generator. The use of the MATLAB Simscape modeling language allows for easy and quick implementation of the model. Design assumptions and analytical model-based analysis have been verified using FEM analysis and measurements performed on the prototype. The results of the presented research validate the design process as well as show the five-phase winding design advantage over the three-phase solution regarding the control winding power quality.

Research limitations/implications

The main disadvantage of the winding function approach-based model development is the simplification regarding omitting the tangential airgap flux density component. However, this fault only applies to large airgap machines and is insignificant in induction machines. The results of the DFIG analyses were limited to the basic operating states of the generator, i.e. the no-load state, the inductive and resistive load.

Practical implications

The novel DFIG with five phase rotor control winding can operate as a regular three-phase machine in an electric power generation system and allows for improved control winding power quality of the proposed electrical energy generation system. This increase in power quality is due to the rotor control windings inverter-based PWM supply voltage, which operates with a wider per-phase supply voltage range than a three-phase system. This phenomenon was quantified using control winding current harmonic analysis.

Originality/value

The paper provides the results of analytical and FEM simulation and measurement tests of the new five-phase dual-feed induction generator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 23 February 2024

Yuliang Du

Auxiliary power system is an indispensable part of the train; the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways, which are…

121

Abstract

Purpose

Auxiliary power system is an indispensable part of the train; the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways, which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters. Powered by DC-link voltage of traction converters, the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking. Meanwhile, powered by traction transformers, the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.

Design/methodology/approach

Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied. Failure reasons why previous solutions cannot be realized are analyzed. An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper. The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive. This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.

Findings

This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid. Control objectives of uninterrupted power supply technology are proposed, which are no overvoltage, no overcurrent and uninterrupted power supply.

Originality/value

The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section. Furthermore, this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 3 December 2020

Yaxing Ren, Saqib Jamshed Rind and Lin Jiang

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause…

1966

Abstract

Purpose

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause the voltage unbalance condition and additional power loss that reduces the cycle life of battery. This paper proposes an energy management strategy for the battery/supercapacitor (SC) hybrid energy storage system (HESS) to improve the transient performance of bus voltage under unbalanced load condition in a standalone AC microgrid (MG).

Design/methodology/approach

The SC has high power density and much more cycling times than battery and thus to be controlled to absorb the transient and unbalanced active power as well as the reactive power under unbalanced condition. Under the proposed energy management design, the battery only needs to generate balanced power to balance the steady state power demand. The energy management strategy for battery/SC HESS in a standalone AC MG is validated in simulation study using PSCAD/EMTDC.

Findings

The results show that the energy management strategy of HESS maintains the bus voltage and eliminates the unbalance condition under single-phase load. In addition, with the SC to absorb the reactive power and unbalanced active power, the unnecessary power loss in battery is reduced with shown less accumulate depth of discharge and higher average efficiency.

Originality/value

With this technology, the service life of the HESS can be extended and the total cost can be reduced.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 6 July 2023

Zakaria Mohamed Salem Elbarbary, Ahmed A. Alaifi, Saad Fahed Alqahtani, Irshad Mohammad Shaik, Sunil Kumar Gupta and Vijayakumar Gali

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective…

773

Abstract

Purpose

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective converters, researchers are developing several topologies.

Design/methodology/approach

It was decided to use the particle swarm optimization approach for this system in order to compute the precise PI controller gain parameters under steady state and dynamic changing circumstances. A high-gain q- ZS boost converter is used as an intermittent converter between a PV and brushless direct current (BLDC) motor to attain maximum power point tracking, which also reduces the torque ripples. A MATLAB/Simulink environment has been used to build and test the positive output quadratic boost high gain converters (PQBHGC)-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. The simulation results show that the PQBHGC-3 topology is effective in comparison with other HG cell DC–DC converters in terms of efficiency, reduced ripples, etc. which is most suitable for PV-driven BLDC applications.

Findings

The simulation results have showed that the PQBHGC-3 gives better performance with minimum voltage ripple of 2V and current ripple of 0.4A which eventually reduces the ripples in the torque in a BLDC motor. Also, the efficiency for the suggested PQBHGC-3 for PV-based BLDC applications is the best with 99%.

Originality/value

This study is the first of its kind comparing the different topologies of PQBHGC-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. This study suggests that the PQBHGC-3 topology is most suitable in PV-driven BLDC applications.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 14 December 2021

Łukasz Knypiński and Frédéric Gillon

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Abstract

Purpose

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Design/methodology/approach

The software consists of an optimization procedure that cooperates with a FEM model to provide the desired behavior of the motor under consideration. The proposed improved version of the genetic algorithm has modifications enabling efficient optimization of LSPMSMs. The objective function consists of three important functional parameters describing the designed machine. The 2-D field-circuit mathematical model of the dynamics operation of the LSPMSMs consists of transient electromagnetic field equations, equations describing electric windings and mechanical motion equations. The model has been developed in the ANSYS Maxwell environment.

Findings

In this proposed approach, the set of design variables contains the variables describing the stator and rotor structure. The improved procedure of the optimization algorithm makes it possible to find an optimal motor structure with correct synchronization properties. The proposed modifications make the optimization procedure faster and more

Originality/value

This proposed approach can be successfully applied to solve the design problems of LSPMSMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 10