Search results

1 – 10 of 419
Article
Publication date: 23 April 2024

Yong Liu, Xue-ge Guo, Qin Jiang and Jing-yi Zhang

We attempt to construct a grey three-way conflict analysis model with constraints to deal with correlated conflict problems with uncertain information.

Abstract

Purpose

We attempt to construct a grey three-way conflict analysis model with constraints to deal with correlated conflict problems with uncertain information.

Design/methodology/approach

In order to address these correlated conflict problems with uncertain information, considering the interactive influence and mutual restraints among agents and portraying their attitudes toward the conflict issues, we utilize grey numbers and three-way decisions to propose a grey three-way conflict analysis model with constraints. Firstly, based on the collected information, we introduced grey theory, calculated the degree of conflict between agents and then analyzed the conflict alliance based on the three-way decision theory. Finally, we designed a feedback mechanism to identify key agents and key conflict issues. A case verifies the effectiveness and practicability of the proposed model.

Findings

The results show that the proposed model can portray their attitudes toward conflict issues and effectively extract conflict-related information.

Originality/value

By employing this approach, we can provide the answers to Deja’s fundamental questions regarding Pawlak’s conflict analysis: “what are the underlying causes of conflict?” and “how can a viable consensus strategy be identified?”

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 March 2024

Prosun Mandal, Srinjoy Chatterjee and Shankar Chakraborty

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an…

Abstract

Purpose

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an effective material removal process. In this process, a series of discontinuous electric discharges is used for removing material from the workpiece in the form of craters generating a replica of the tool into the workpiece in a dielectric environment. Appropriate selection of the tool electrode material and combination of input parameters is an important requirement for performance enhancement of an EDM process. This paper aims to optimize an EDM process using single-valued neutrosophic grey relational analysis using Cu-multi-walled carbon nanotube (Cu-MWCNT) composite tool electrode.

Design/methodology/approach

This paper proposes the application of grey relational analysis (GRA) in a single-valued neutrosophic fuzzy environment to identify the optimal parametric intermix of an EDM process while considering Cu-MWCNT composite as the tool electrode material. Based on Taguchi’s L9 orthogonal array, nine experiments are conducted at varying combinations of four EDM parameters, i.e. pulse-on time, duty factor, discharge current and gap voltage, with subsequent measurement of two responses, i.e. material removal rate (MRR) and tool wear rate (TWR). The electrodeposition process is used to fabricate the Cu-MWCNT composite tool.

Findings

It is noticed that both the responses would be simultaneously optimized at higher levels of pulse-on time (38 µs) and duty factor (8), moderate level of discharge current (5 A) and lower level of gap voltage (30 V). During bi-objective optimization (maximization of MRR and minimization of TWR) of the said EDM process, the achieved values of MRR and TWR are 243.74 mm3/min and 0.001034 g/min, respectively.

Originality/value

Keeping in mind the type of response under consideration, their measured values for each of the EDM experiments are expressed in terms of linguistic variables which are subsequently converted into single-valued neutrosophic numbers. Integration of GRA with single-valued neutrosophic sets would help in optimizing the said EDM process with the Cu-MWCNT composite tool while simultaneously considering truth-membership, indeterminacy membership and falsity-membership degrees in a human-centric uncertain decision-making environment.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 April 2024

Gabrijela Popovic, Aleksandra Fedajev, Petar Mitic and Ieva Meidute-Kavaliauskiene

This study aims to integrate the resource-based view (RBV) with other theories that consider external factors necessary to respond successfully to dynamic and uncertain…

Abstract

Purpose

This study aims to integrate the resource-based view (RBV) with other theories that consider external factors necessary to respond successfully to dynamic and uncertain entrepreneurial business conditions.

Design/methodology/approach

The paper introduces an multi-criteria decision-making (MCDM) approach, utilizing the axial-distance-based aggregated measurement (ADAM) method with weights determined by the preference selection index (PSI) method, to rank eight European countries based on the Global Entrepreneurship Monitor (GEM) data. Additionally, the paper extends the existing entrepreneurial ecosystem taxonomy (EET), offering an additional classification.

Findings

The performed analysis emphasizes the importance and necessity of involving different dimensions of EE in assessing the countries' entrepreneurship performance, which facilitates creating adequate policy measures.

Research limitations/implications

The crucial limitations are assessments based only on the GEM data from a particular period, possibly leading to a certain bias. Future research should involve data from various resources to increase the results' reliability.

Originality/value

The ranking results and country classification obtained using the ADAM-based approach and two distinct taxonomies served as the basis for formulating tailored policy recommendations, aiming to formulate tailored policy implications for increasing the number of new entrepreneurs and improving innovativeness, sustainability and internationalization of existing entrepreneurs for each group of countries.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 30 April 2024

Sulakshya Gaur and Abhay Tawalare

Design cost overrun is one of the prominent factor that can impact the sustainable delivery of the project. It can be encountered due to a lack of information flow, design…

Abstract

Purpose

Design cost overrun is one of the prominent factor that can impact the sustainable delivery of the project. It can be encountered due to a lack of information flow, design variation, etc. thereby impacting the project budget, waste generation and schedule. An overarching impact of this is witnessed in the sustainability dimensions of the project, mainly in terms of economic and environmental aspects. This work, therefore, aims to assess the implications of a technological process, in the form of building information modelling (BIM), that can smoothen the design process and mitigate the risks, thus impacting the sustainability of the project holistically.

Design/methodology/approach

The identified design risks in construction projects from the literature were initially analysed using a fuzzy inference system (FIS). This was followed by the focus group discussion with the project experts to understand the role of BIM in mitigating the project risks and, in turn, fulfilling the sustainability dimensions.

Findings

The FIS-based risk assessment found seven risks under the intolerable category for which the BIM functionalities associated with the common data environment (CDE), data storage and exchange and improved project visualization were studied as mitigation approaches. The obtained benefits were then subsequently corroborated with the achievement of three sustainability dimensions.

Research limitations/implications

The conducted study strengthens the argument for the adoption of technological tools in the construction industry as they can serve multifaceted advantages. This has been shown through the use of BIM in risk mitigation, which inherently impacts project sustainability holistically.

Originality/value

The impact of BIM on all three dimensions of sustainability, i.e. social, economic and environmental, through its use in the mitigation of critical risks was one of the important findings. It presented a different picture as opposed to other studies that have mainly been dominated by the use of BIM to achieve environmental sustainability.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 18 March 2024

Yash Daultani, Ashish Dwivedi, Saurabh Pratap and Akshay Sharma

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply…

52

Abstract

Purpose

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply chain are required to absorb the impact of resultant disruptions in perishable food supply chains (FSC). The present study identifies specific resilient functions to overcome the problems created by natural disasters in the FSC context.

Design/methodology/approach

The quality function deployment (QFD) method is utilized for identifying these relations. Further, fuzzy term sets and the analytical hierarchy process (AHP) are used to prioritize the identified problems. The results obtained are employed to construct a QFD matrix with the solutions, followed by the technique for order of preference by similarity to the ideal solution (TOPSIS) on the house of quality (HOQ) matrix between the identified problems and functions.

Findings

The results from the study reflect that the shortage of employees in affected areas is the major problem caused by a natural disaster, followed by the food movement problem. The results from the analysis matrix conclude that information sharing should be kept at the highest priority by policymakers to build and increase resilient functions and sustainable crisis management in a perishable FSC network.

Originality/value

The study suggests practical implications for managing a FSC crisis during a natural disaster. The unique contribution of this research lies in finding the correlation and importance ranking among different resilience functions, which is crucial for managing a FSC crisis during a natural disaster.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 22 March 2024

Mohd Mustaqeem, Suhel Mustajab and Mahfooz Alam

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have…

Abstract

Purpose

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have proposed a novel hybrid approach that combines Gray Wolf Optimization with Feature Selection (GWOFS) and multilayer perceptron (MLP) for SDP. The GWOFS-MLP hybrid model is designed to optimize feature selection, ultimately enhancing the accuracy and efficiency of SDP. Gray Wolf Optimization, inspired by the social hierarchy and hunting behavior of gray wolves, is employed to select a subset of relevant features from an extensive pool of potential predictors. This study investigates the key challenges that traditional SDP approaches encounter and proposes promising solutions to overcome time complexity and the curse of the dimensionality reduction problem.

Design/methodology/approach

The integration of GWOFS and MLP results in a robust hybrid model that can adapt to diverse software datasets. This feature selection process harnesses the cooperative hunting behavior of wolves, allowing for the exploration of critical feature combinations. The selected features are then fed into an MLP, a powerful artificial neural network (ANN) known for its capability to learn intricate patterns within software metrics. MLP serves as the predictive engine, utilizing the curated feature set to model and classify software defects accurately.

Findings

The performance evaluation of the GWOFS-MLP hybrid model on a real-world software defect dataset demonstrates its effectiveness. The model achieves a remarkable training accuracy of 97.69% and a testing accuracy of 97.99%. Additionally, the receiver operating characteristic area under the curve (ROC-AUC) score of 0.89 highlights the model’s ability to discriminate between defective and defect-free software components.

Originality/value

Experimental implementations using machine learning-based techniques with feature reduction are conducted to validate the proposed solutions. The goal is to enhance SDP’s accuracy, relevance and efficiency, ultimately improving software quality assurance processes. The confusion matrix further illustrates the model’s performance, with only a small number of false positives and false negatives.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 February 2024

Chao Xia, Bo Zeng and Yingjie Yang

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between…

Abstract

Purpose

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between their physical properties, which in turn affects the stability and reliability of the model performance.

Design/methodology/approach

A novel multivariable grey prediction model is constructed with different background-value coefficients of the dependent and independent variables, and a one-to-one correspondence between the variables and the background-value coefficients to improve the smoothing effect of the background-value coefficients on the sequences. Furthermore, the fractional order accumulating operator is introduced to the new model weaken the randomness of the raw sequence. The particle swarm optimization (PSO) algorithm is used to optimize the background-value coefficients and the order of the model to improve model performance.

Findings

The new model structure has good variability and compatibility, which can achieve compatibility with current mainstream grey prediction models. The performance of the new model is compared and analyzed with three typical cases, and the results show that the new model outperforms the other two similar grey prediction models.

Originality/value

This study has positive implications for enriching the method system of multivariable grey prediction model.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 27 March 2024

Xiaomei Liu, Bin Ma, Meina Gao and Lin Chen

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey…

18

Abstract

Purpose

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey models can't catch the time-varying trend well.

Design/methodology/approach

The proposed model couples Fourier series and linear time-varying terms as the grey action, to describe the characteristics of variable amplitude and seasonality. The truncated Fourier order N is preselected from the alternative order set by Nyquist-Shannon sampling theorem and the principle of simplicity, then the optimal Fourier order is determined by hold-out method to improve the robustness of the proposed model. Initial value correction and the multiple transformation are also studied to improve the precision.

Findings

The new model has a broader applicability range as a result of the new grey action, attaining higher fitting and forecasting accuracy. The numerical experiment of a generated monthly time series indicates the proposed model can accurately fit the variable amplitude seasonal sequence, in which the mean absolute percentage error (MAPE) is only 0.01%, and the complex simulations based on Monte-Carlo method testify the validity of the proposed model. The results of monthly electricity consumption in China's primary industry, demonstrate the proposed model catches the time-varying trend and has good performances, where MAPEF and MAPET are below 5%. Moreover, the proposed TVGFM(1,1,N) model is superior to the benchmark models, grey polynomial model (GMP(1,1,N)), grey Fourier model (GFM(1,1,N)), seasonal grey model (SGM(1,1)), seasonal ARIMA model seasonal autoregressive integrated moving average model (SARIMA) and support vector regression (SVR).

Originality/value

The parameter estimates and forecasting of the new proposed TVGFM are studied, and the good fitting and forecasting accuracy of time-varying amplitude seasonal fluctuation series are testified by numerical simulations and a case study.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 30 April 2024

C. Bharanidharan, S. Malathi and Hariprasath Manoharan

The potential of vehicle ad hoc networks (VANETs) to improve driver and passenger safety and security has made them a hot topic in the field of intelligent transportation systems…

Abstract

Purpose

The potential of vehicle ad hoc networks (VANETs) to improve driver and passenger safety and security has made them a hot topic in the field of intelligent transportation systems (ITSs). VANETs have different characteristics and system architectures from mobile ad hoc networks (MANETs), with a primary focus on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. But protecting VANETs from malicious assaults is crucial because they can undermine network security and safety.

Design/methodology/approach

The black hole attack is a well-known danger to VANETs. It occurs when a hostile node introduces phony routing tables into the network, potentially damaging it and interfering with communication. A safe ad hoc on-demand distance vector (AODV) routing protocol has been created in response to this issue. By adding cryptographic features for source and target node verification to the route request (RREQ) and route reply (RREP) packets, this protocol improves upon the original AODV routing system.

Findings

Through the use of cryptographic-based encryption and decryption techniques, the suggested method fortifies the VANET connection. In addition, other network metrics are taken into account to assess the effectiveness of the secure AODV routing protocol under black hole attacks, including packet loss, end-to-end latency, packet delivery ratio (PDR) and routing request overhead. Results from simulations using an NS-2.33 simulator show how well the suggested fix works to enhance system performance and lessen the effects of black hole assaults on VANETs.

Originality/value

All things considered, the safe AODV routing protocol provides a strong method for improving security and dependability in VANET systems, protecting against malevolent attacks and guaranteeing smooth communication between cars and infrastructure.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 6 March 2024

Radiah Othman and Rashid Ameer

This paper aims to seek accounting graduates' perspectives on the demand for accounting in their workplaces, on the gaps in accounting education (AE), and on the future of the…

Abstract

Purpose

This paper aims to seek accounting graduates' perspectives on the demand for accounting in their workplaces, on the gaps in accounting education (AE), and on the future of the accounting profession, inspired by the new definition of accounting proposed by Carnegie et al. (2021, 2022, 2023a), to adopt a strong focus on sustainable development goals (SDGs) in AE to inculcate tertiary students with the skills that lead them to approach and apply accounting as a multidimensional technical, social and moral (TSM) practice.

Design/methodology/approach

The online qualitative survey was distributed to 100 randomly selected New Zealand accounting graduates in order to gather insights from their workplaces. All responses from the 30 graduates who completed the questionnaire underwent qualitative analysis using Leximancer software, which automatically identifies high-level concepts and insights and offers interactive visualizations without bias.

Findings

The graduates’ experiences underscore the ongoing significance of technical skills in the New Zealand workplace. They emphasized the lack of non-technical skills training, stressed the necessity of diverse business knowledge and highlighted the importance of automation and digital skills.

Practical implications

The implications for transforming AE involve adopting an activist approach to integrate a TSM perspective into teaching and learning and being open to an interdisciplinary approach to expose tertiary students to the impact of accounting on sustainable development, including collaboration with professional bodies for real-world experiences.

Originality/value

The importance of engaging with SDG-related narratives is stressed to stimulate further discussion, debate and research aimed at identifying practical solutions for AE as a facilitator for SDGs in realizing accounting as a TSM practice.

Details

Meditari Accountancy Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-372X

Keywords

Access

Year

Last 3 months (419)

Content type

Earlycite article (419)
1 – 10 of 419