Search results

1 – 10 of over 3000
Article
Publication date: 6 July 2015

Xinlong Wang and Shuai Song

– The purpose of this paper is to improve the tracking performance of the tracking loops under high dynamic and severe jamming conditions.

Abstract

Purpose

The purpose of this paper is to improve the tracking performance of the tracking loops under high dynamic and severe jamming conditions.

Design/methodology/approach

First, as the two dominant measurement error sources of the tracking loops, the thermal noise jitter and the dynamic stress error are thoroughly analyzed. Second, a scheme of adaptive tracking loops, which could adaptively adjust the order and the bandwidth of tracking loops, is proposed. Third, real-time detections of the vehicle dynamics and the carrier-to-noise density ratio, and the adaptive bandwidth of the carrier loop are presented, respectively. Finally, simulations are operated to validate the excellent tracking performance of the adaptive tracking loops.

Findings

Based on the principle of minimizing the measurement errors, the loop order and bandwidth are adaptively adjusted in the proposed scheme. Thus, the anti-jamming capability and dynamic tracking performance of the tracking loops could be effectively enhanced.

Practical implications

This paper provides further study on the method of improving the tracking capability under complexly applied conditions of high dynamics and severe jamming.

Originality/value

The detections of carrier-to-noise density ratio and vehicle dynamics are used to adaptively adjusting the loop order and bandwidth, which could not only improve the measurement accuracy but also ensure the stable operation of tracking loops.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 June 2022

Qiang Liu, Shicai Shi, Minghe Jin, Shaowei Fan and Hong Liu

This study aims to design a controller which can improve the end-effector low-frequency chattering resulting from the measurement noise and the time delay in the on-orbit tasks…

Abstract

Purpose

This study aims to design a controller which can improve the end-effector low-frequency chattering resulting from the measurement noise and the time delay in the on-orbit tasks. The rendezvous point will move along the rendezvous ring owing to the error of the camera, and the manipulators’ collision need be avoided. In addition, owing to the dynamics coupling, the manipulators’ motion will disturb the spacecraft, and the low tracking accuracy of the end-effector needs to be improved.

Design/methodology/approach

This paper proposes a minimum disturbance controller based on the synchronous and adaptive acceleration planning to improve the tracking error and the disturbance energy. The synchronous and adaptive acceleration planning method plans the optimal rendezvous point and designs synchronous approaching method and provides an estimation method of the rendezvous point acceleration. A minimum disturbance controller is designed based on the energy conservation to optimize the disturbance resulting from the manipulator’s motion.

Findings

The acceleration planning method avoids the collision of two end-effectors and reduces the error caused by the low-frequency chattering. The minimum disturbance controller minimizes the disturbance energy of the manipulators’ motion transferred to the spacecraft. Experiment results show that the proposed method improves the low-frequency chattering, and the average position tracking error reduces by 30%, and disturbance energy reduces by 30% at least. In addition, it has good performances in the synchronous motion and adaptive tracking.

Originality/value

Given the immeasurability of the target satellite acceleration in space, this paper proposes an estimation method of the acceleration. This paper proposes a synchronous and adaptive acceleration planning method. In addition, the rendezvous points are optimized to avoid the two end-effectors collisions. By the energy conservation, the minimum disturbance controller is designed to ensure a satisfying tracking error and reduce the disturbance energy resulting from the manipulators’ motion.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 March 2009

Chun‐Fei Hsu, Chia‐Yu Hsu, Chih‐Min Lin and Tsu‐Tian Lee

A chaotic system is a nonlinear deterministic system that displays complex, noisy‐like and unpredictable behavior. The interest in chaotic systems lies mostly upon their complex…

Abstract

Purpose

A chaotic system is a nonlinear deterministic system that displays complex, noisy‐like and unpredictable behavior. The interest in chaotic systems lies mostly upon their complex, unpredictable behavior, and extreme sensitivity to initial conditions as well as parameter variations. Based on wavelet neural network's (WNN) online approximation ability, the purpose of this paper is to propose an adaptive Gaussian wavelet neural control (AGWNC) system to control a chaotic system.

Design/methodology/approach

The proposed AGWNC system is composed of a wavelet neural controller and a compensation tangent controller. The wavelet neural controller utilizes a Gaussian WNN to mimic an ideal controller, and the compensation tangent controller is designed to compensate the approximation error between the ideal and the wavelet neural controllers. The controller parameters of the proposed AGWNC can online tune in the Lyapunov sense, thus the uniformly ultimately bounded stability of closed‐loop system can be guaranteed.

Findings

The proposed AGWNC system is applied to a chaotic system. Simulation results are used to demonstrate the effectiveness and performance of the proposed AGWNC scheme. Simulation results show that not only the favorable control performance can be achieved but also the control efforts without any chattering phenomena. Moreover, all controller parameters can be online tuning by the derived adaptive laws based on the Lyapunov function.

Originality/value

The proposed AGWNC approach is interesting for the design of an intelligent control scheme. The main contributions of this paper are: the overall closed‐loop control system is globally stable in uniform ultimate boundedness; the tracking error can be asymptotically attenuated to a desired small level around zero by appropriate chosen parameters and learning rates; and the AGWNC system can achieve favorable tracking performance.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 20 March 2019

Yanchao Sun, Liangliang Chen and Hongde Qin

This paper aims to investigate the distributed coordinated fuzzy tracking problems for multiple mechanical systems with nonlinear model uncertainties under a directed…

Abstract

Purpose

This paper aims to investigate the distributed coordinated fuzzy tracking problems for multiple mechanical systems with nonlinear model uncertainties under a directed communication topology.

Design/methodology/approach

The dynamic leader case is considered while only a subset of the follower mechanical systems can obtain the leader information. First, this paper approximates the system uncertainties with finite fuzzy rules and proposes a distributed adaptive tracking control scheme. Then, this paper makes a detailed classification of the system uncertainties and uses different fuzzy systems to approximate different kinds of uncertainties. Further, an improved distributed tracking strategy is proposed. Closed-loop systems are investigated using graph theory and Lyapunov theory. Numerical simulations are performed to verify the effectiveness of the proposed methods.

Findings

Based on fuzzy control and adaptive control theories, the desired distributed coordinated tracking control strategies for multiple uncertain mechanical systems are developed.

Originality/value

Compared with most existing literature, the proposed distributed tracking algorithms use fuzzy control and adaptive control techniques to cope with system nonlinear uncertainties of multiple mechanical systems. Moreover, the improved control strategy not only reduces fuzzy rules but also has higher control accuracy.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 29 June 2010

M. Fatih Talu, Servet Soyguder and Ömür Aydogmus

The purpose of the paper is to present an approach to detect and isolate the sensor failures, using a bank of extended Kalman filters (EKFs) using an innovative initialization of…

Abstract

Purpose

The purpose of the paper is to present an approach to detect and isolate the sensor failures, using a bank of extended Kalman filters (EKFs) using an innovative initialization of covariance matrix using system dynamics.

Design/methodology/approach

The EKF is developed for nonlinear flight dynamic estimation of a spacecraft and the effects of the sensor failures using a bank of Kalman filters in investigated. The approach is to develop fast convergence Kalman filter algorithm based on covariance matrix computation for rapid sensor fault detection. The proposed nonlinear filter has been tested and compared with the classical Kalman filter schemes via simulations performed on the model of a space vehicle; this simulation activity has shown the benefits of the novel approach.

Findings

In the simulations, the rotational dynamics of a spacecraft dynamic model are considered, and the sensor failures are detected and isolated.

Research limitations/implications

A novel fast convergence Kalman filter for detection and isolation of faulty sensors applied to the three axis spacecraft attitude control problem is examined and an effective approach to isolate the faulty sensor measurements is proposed. Advantages of using innovative initialization of covariance matrix are presented in the paper. The proposed scheme enhances the improvement in estimation accuracy. The proposed method takes advantage of both the fast convergence capability and the robustness of numerical stability. Quaternion‐based initialization of the covariance matrix is not considered in this paper.

Originality/value

A new fast converging Kalman filter for sensor fault detection and isolation by innovative initialization of covariance matrix applied to a nonlinear spacecraft dynamic model is examined and an effective approach to isolate the measurements from failed sensors is proposed. An EKF has been developed for the nonlinear dynamic estimation of an orbiting spacecraft. The proposed methodology detects and decides if and where a sensor fault has occurred, isolates the faulty sensor, and outputs the corresponding healthy sensor measurement.

Details

Sensor Review, vol. 30 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 February 2018

Jun Wu, Fenglei Ni, Yuanfei Zhang, Shaowei Fan, Qi Zhang, Jiayuan Lu and Hong Liu

This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly.

Abstract

Purpose

This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly.

Design/methodology/approach

The dynamics of the manipulator is firstly presented with linear property. The controller used in connector assembly is inspired by human operation habits in similar tasks. The hybrid impedance control is adopted to apply force in the assembly direction and provide compliance in rest directions. The reference trajectory is implemented with an adaptive controller. Event-based switching strategy is conducted for a smooth transition from unconstrained to constrained space.

Findings

The method can ensure both ideal compliance behaviour with dynamic uncertainty and a smooth transition from unconstrained to constrained space. Also, the method can ensure compliant connector assembly with a good tolerance to the target estimation error.

Practical implications

The method can be applied in the connector assembly by “pushing” operation. The controller devotes efforts on force tracking and smooth transition, having potential applications in contact tasks in delicate environment.

Originality/value

As far as the authors know, the paper is original in providing a uniform controller for improving force and position control performance in both unconstrained and constrained space with dynamic uncertainty. The proposed controller can ensure a smooth transition by only adjusting parameters.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 May 2015

Bindi You, Huibo Zhang, Peixiang Wang and Jiang Zhang

– The purpose of this paper is to analyze the effect of the space thermal effect on satellite antenna.

Abstract

Purpose

The purpose of this paper is to analyze the effect of the space thermal effect on satellite antenna.

Design/methodology/approach

In this paper, according to the geometric characteristics of parabolic reflector, the transient temperature field of an element along its thickness direction is built for shell structures using finite element discretization and the quadratic function interpolation, and heat conduction equations are derived based on the theory of the thermo-elastic dynamics. The modeling theory of rigid–flexible coupling system considering thermal effect is extended to the satellite antenna system. Then, the coupling dynamic equations are established including coupling stiffness matrix and thermal loaded undergoing a large overall motion. Finally, an adaptive controller is proposed and the adaptive update laws are designed under the parameter uncertainty.

Findings

The results of dynamic characteristic analysis show that the dynamic thermal loaded coupled with structure deformation induce the unstable vibration and coupled flutter. Further, the coupling effect degrades the antenna pointing accuracy seriously and leads to disturbances on satellite base. The results of the simulation show that the adaptive controller can ensure that antenna pointing closes to the expected trajectory progressively, and it demonstrates that the proposed control scheme is feasible and effective.

Research limitations/implications

The paper considers only the effect of space thermal effect to satellite antenna. Further research could be done on the flexible multibody system by considering joint clearance in the future research.

Originality/value

The conclusions of this paper would be an academic significance and engineering value for the analysis and control of satellite antenna pointing.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 February 2023

Kaixin Li, Ye He, Kuan Li and Chengguo Liu

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…

Abstract

Purpose

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.

Design/methodology/approach

Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.

Findings

The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.

Practical implications

The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.

Originality/value

A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 June 2008

Aitor Bilbao‐Guillerna, Manuel de la Sen and Santiago Alonso‐Quesada

The purpose of this paper is to improve the transient response and the inter‐sample behavior of a model reference adaptive control system by an appropriate selection of the…

Abstract

Purpose

The purpose of this paper is to improve the transient response and the inter‐sample behavior of a model reference adaptive control system by an appropriate selection of the fractional order hold (FROH) gain β and the multirate gains used in the control reconstruction signal through a fully freely chosen reference model even when the continuous plant possesses unstable zeros.

Design/methodology/approach

A multiestimation adaptive control scheme for linear time‐invariant continuous‐time plant with unknown parameters is presented. The set of discrete adaptive models is calculated from a different combination of the correcting gain β in a FROH and the set of gains to reconstruct the plant input under multirate sampling with fast input sampling. Then the scheme selects online the model with the best continuous‐time tracking performance which includes a measure of the inter‐sample ripple, which is improved. The estimated discrete unstable zeros are avoided through an appropriate design of the multirate gains so that the reference model might be freely chosen with no constraints on potential unstable zeros.

Findings

The scheme is able to select online the discretization model with the best continuous‐time tracking performance without an appropriate initialization.

Research limitations/implications

The switching mechanism among the different models should maintain in operation the active discretization model at least for a minimum residence time in order to guarantee closed‐loop stability. The inter‐sample behavior is improved, but it is not always completely removed.

Practical implications

The transient response and the inter‐sample behavior are improved by using this multiestimation‐based discrete controller compared with a single estimation‐based one. The implementation of discrete controllers makes it easier and cheaper to implement and also more reliable than continuous‐time controllers.

Originality/value

The main innovation of the paper compared with previous background work is that the reference output is supplied by a stable continuous transfer function. Then the scheme is able to partly regulate the continuous‐time tracking error while the controller is essentially discrete‐time and operated by a FROH in general.

Details

Kybernetes, vol. 37 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 October 2020

Yew-Chung Chak, Renuganth Varatharajoo and Nima Assadian

The paper aims to address the combined attitude control and Sun tracking problem in a flexible spacecraft in the presence of external and internal disturbances. The attitude…

Abstract

Purpose

The paper aims to address the combined attitude control and Sun tracking problem in a flexible spacecraft in the presence of external and internal disturbances. The attitude stabilization of a flexible satellite is generally a challenging control problem, because of the facts that satellite kinematic and dynamic equations are inherently nonlinear, the rigid–flexible coupling dynamical effect, as well as the uncertainty that arises from the effect of actuator anomalies.

Design/methodology/approach

To deal with these issues in the combined attitude and Sun tracking system, a novel control scheme is proposed based on the adaptive fuzzy Jacobian approach. The augmented spacecraft model is then analyzed and the Lyapunov-based backstepping method is applied to develop a nonlinear three-axis attitude pointing control law and the adaptation law.

Findings

Numerical results show the effectiveness of the proposed adaptive control scheme in simultaneously tracking the desired attitude and the Sun.

Practical implications

Reaction wheels are commonly used in many spacecraft systems for the three-axis attitude control by delivering precise torques. If a reaction wheel suffers from an irreversible mechanical breakdown, then it is likely going to interrupt the mission, or even leading to a catastrophic loss. The pitch-axis mounted solar array drive assemblies (SADAs) can be exploited to anticipate such situation to generate a differential torque. As the solar panels are rotated by the SADAs to be orientated relative to the Sun, the pitch-axis wheel control torque demand can be compensated by the differential torque.

Originality/value

The proposed Jacobian control scheme is inspired by the knowledge of Jacobian matrix in the trajectory tracking of robotic manipulators.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 3000