Search results

1 – 10 of 14
Article
Publication date: 7 November 2016

Yahya M. Tashtoush, Mohammad A. Alsmirat and Tasneem Alghadi

The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad…

Abstract

Purpose

The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad hoc network. We call this protocol Geometric Sequence Based Multipath Routing Protocol (GMRP).

Design/methodology/approach

GMRP distributes packets according to the geometric sequence. GMRP is evaluated using GloMoSim simulator. The authors use packet delivery ratio and end-to-end delay as the comparison performance metrics. They also vary many network configuration parameters such as number of nodes, transmission rate, mobility speed and network area.

Findings

The simulation results show that GMRP reduces the average end-to-end delay by up to 49 per cent and increases the delivery ratio by up to 8 per cent.

Originality/value

This study is the first to propose to use of geometric sequence in the multipath routing approach.

Details

International Journal of Pervasive Computing and Communications, vol. 12 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 31 December 2006

Curt Cramer, Oliver Stanze, Kilian Weniger and Martina Zitterbart

Many clustering protocols for mobile ad hoc networks (MANETs) have been proposed in the literature. With only one exception so far (1), all these protocols are proactive, thus…

Abstract

Many clustering protocols for mobile ad hoc networks (MANETs) have been proposed in the literature. With only one exception so far (1), all these protocols are proactive, thus wasting bandwidth when their function is not currently needed. To reduce the signalling traffic load, reactive clustering may be employed.We have developed a clustering protocol named “On‐Demand Group Mobility‐Based Clustering” (ODGMBC) (2), (3) which is reactive. Its goal is to build clusters as a basis for address autoconfiguration and hierarchical routing. In contrast to the protocol described in ref. (1), the design process especially addresses the notions of group mobility and of multi‐hop clusters in a MANET. As a result, ODGMBC maps varying physical node groups onto logical clusters. In this paper, ODGMBC is described. It was implemented for the ad hoc network simulator GloMoSim (4) and evaluated using several performance indicators. Simulation results are promising and show that ODGMBC leads to stable clusters. This stability is advantageous for autoconfiguration and routing mechansims to be employed in conjunction with the clustering algorithm.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 28 March 2018

Ali Mohammed Mansoor, Adel Mohammed Sarea and Aznul Qalid Md Sabri

The vehicular ad hoc network (VANET) is an emerging area for smart cities as observed in last few decades. However, some hurdles for VANET exist that need to be resolved before…

Abstract

Purpose

The vehicular ad hoc network (VANET) is an emerging area for smart cities as observed in last few decades. However, some hurdles for VANET exist that need to be resolved before its full implementation in smart cities. Routing is one of the main factors for having effective communication between smart vehicles that urgently needs to be addressed. One factor that affects communication between the vehicles is the intersection points that obstruct the communication. The paper aims to discuss these issues.

Design/methodology/approach

The conventional routing schemes fail to address the intersection problems that occur during the two points of communication. Therefore, this paper analyses the performance of existing position-based routing protocol for inter-vehicle ad hoc networks, considering the impact of a number of intersections. This simulation evaluates different position-based routing protocols such as Intersection-based Distance and Traffic-Aware Routing (IDTAR), Greedy Traffic-Aware Routing, Anchor-based Street and Traffic-Aware Routing and Geographic Source Routing, based on road topology and the number of intersections.

Findings

As a result, the protocol IDTAR has a lower end-to-end delay and high packet delivery ratio in terms of the number of intersections as a case study of smart cities. This concludes that IDTAR can be adaptive to smart cities communication, although some questions need to be considered in terms of its security, compatibility, reliability and robustness.

Practical implications

The role of VANET has been highlighted in smart cities due to its implications in day-to-day life. The vehicles in VANET are equipped with wireless communication nodes to provide network connectivity. Such types of network operate without the legacy infrastructure, as well as legacy client/servers.

Originality/value

Additionally, the study contributes to smart cities by measuring the performance of position-based routing protocols for VANETs.

Details

World Journal of Entrepreneurship, Management and Sustainable Development, vol. 14 no. 2
Type: Research Article
ISSN: 2042-5961

Keywords

Article
Publication date: 2 January 2020

Baban A. Mahmood and Dakshnamoorthy Manivanann

The purpose of this paper is to design an efficient on-demand routing protocol for mobile ad hoc networks (MANETs) which combines greedy forwarding and backtracking.

Abstract

Purpose

The purpose of this paper is to design an efficient on-demand routing protocol for mobile ad hoc networks (MANETs) which combines greedy forwarding and backtracking.

Design/methodology/approach

It uses a hybrid approach. It uses greedy approach to determine a route from source to the destination. If the greedy approach fails, then it uses a backtracking approach. Combining greedy and backtracking approaches results in a more efficient protocol.

Findings

A new routing algorithm for MANETs which performs better than some of the existing algorithms.

Research limitations/implications

A major limitation of this work is that the authors did not implement the protocol on a test bed and evaluated the performance. They neither had the infrastructure nor the resources to actually implement the protocol. Instead, like most of the researchers, they evaluated the performance of their protocol based on extensive simulation. The mobility model, the area of deployment and the density of nodes chosen to simulate the protocol are consistent with what many of the other researchers have done. Intuitively, the authors’ protocol, as the performance evaluation indicates, is likely to perform well in small networks.

Practical implications

The authors did not implement the protocol on a test bed to evaluate the performance of the protocol. The authors used simulation to study the performance of their protocol. Their simulation model is similar to many of the research works published in the literature.

Originality/value

To the authors’ knowledge, no other paper has combined the greedy and backtracking approach to design a routing protocols for MANETs.

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 23 November 2012

Sami J. Habib and Paulvanna N. Marimuthu

Energy constraint is always a serious issue in wireless sensor networks, as the energy possessed by the sensors is limited and non‐renewable. Data aggregation at intermediate base…

Abstract

Purpose

Energy constraint is always a serious issue in wireless sensor networks, as the energy possessed by the sensors is limited and non‐renewable. Data aggregation at intermediate base stations increases the lifespan of the sensors, whereby the sensors' data are aggregated before being communicated to the central server. This paper proposes a query‐based aggregation within Monte Carlo simulator to explore the best and worst possible query orders to aggregate the sensors' data at the base stations. The proposed query‐based aggregation model can help the network administrator to envisage the best query orders in improving the performance of the base stations under uncertain query ordering. Furthermore, it aims to examine the feasibility of the proposed model to engage simultaneous transmissions at the base station and also to derive a best‐fit mathematical model to study the behavior of data aggregation with uncertain querying order.

Design/methodology/approach

The paper considers small and medium‐sized wireless sensor networks comprised of randomly deployed sensors in a square arena. It formulates the query‐based data aggregation problem as an uncertain ordering problem within Monte Carlo simulator, generating several thousands of uncertain orders to schedule the responses of M sensors at the base station within the specified time interval. For each selected time interval, the model finds the best possible querying order to aggregate the data with reduced idle time and with improved throughput. Furthermore, it extends the model to include multiple sensing parameters and multiple aggregating channels, thereby enabling the administrator to plan the capacity of its WSN according to specific time intervals known in advance.

Findings

The experimental results within Monte Carlo simulator demonstrate that the query‐based aggregation scheme show a better trade‐off in maximizing the aggregating efficiency and also reducing the average idle‐time experienced by the individual sensor. The query‐based aggregation model was tested for a WSN containing 25 sensors with single sensing parameter, transmitting data to a base station; moreover, the simulation results show continuous improvement in best‐case performances from 56 percent to 96 percent in the time interval of 80 to 200 time units. Moreover, the query aggregation is extended to analyze the behavior of WSN with 50 sensors, sensing two environmental parameters and base station equipped with multiple channels, whereby it demonstrates a shorter aggregation time interval against single channel. The analysis of average waiting time of individual sensors in the generated uncertain querying order shows that the best‐case scenario within a specified time interval showed a gain of 10 percent to 20 percent over the worst‐case scenario, which reduces the total transmission time by around 50 percent.

Practical implications

The proposed query‐based data aggregation model can be utilized to predict the non‐deterministic real‐time behavior of the wireless sensor network in response to the flooded queries by the base station.

Originality/value

This paper employs a novel framework to analyze all possible ordering of sensor responses to be aggregated at the base station within the stipulated aggregating time interval.

Details

International Journal of Pervasive Computing and Communications, vol. 8 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 April 2016

Zhuming Bi, Guoping Wang and Li Da Xu

– The purpose of this paper is to present a visualization platform to control and monitor wireless sensor networks (WSNs) in manufacturing applications.

2110

Abstract

Purpose

The purpose of this paper is to present a visualization platform to control and monitor wireless sensor networks (WSNs) in manufacturing applications.

Design/methodology/approach

To make the platform flexible and versatile, a modular framework is adopted in modeling and visualizing WSNs. The Eclipse programming environment is used to maximize the scalability and adaptability of the platform. A set of the core functional modules have been designed and implemented to support the system operation. The platform is validated through a case study simulation.

Findings

The platform is capable of accommodating different operating systems such as Windows and Linux. It allows integrating new plug-ins developed in various languages such as Java, C, C++, and Matlab. The Graphic User Interface has been applied to process and visualize the acquired real-time data from a WSN, and the embodied methodologies can be used to predict the behaviors of objects in the network.

Research limitations/implications

The work has shown the feasibility and potential of the proposed platform in improving the real-time performance of WSN. However, the number of the developed functional modules is limited, and additional effort is required to develop sophisticated functional modules or sub-systems for a customized application.

Practical implications

The platform can be applied to monitor and visualize various WSN applications in manufacturing environments such as automated workcells, transportation systems, logistic, and storage systems.

Originality/value

The work is motivated by the scarce research on the development tools for monitoring and visualization of WSNs in manufacturing applications. The proposed platform serves for both of system developers and users. It is modularized with a set of core functional modules; it can be extended to accommodate new functional modules with a minimal effort for a different application.

Details

Internet Research, vol. 26 no. 2
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 4 April 2008

Shih‐Hao Shen, Yueh‐Min Huang and Jen‐Wen Ding

Wireless mesh networks (WMNs) are regarded as a milestone in developing next‐generation wireless networks. The multi‐hop architecture of WMN makes it very attractive. However…

Abstract

Purpose

Wireless mesh networks (WMNs) are regarded as a milestone in developing next‐generation wireless networks. The multi‐hop architecture of WMN makes it very attractive. However, interoperability is an inherent problem for deploying a large‐scale WMN, which may consist of various types of wireless networks. There are two intuitive approaches to solving the interoperability problem: the dual‐stack/multi‐stack approach and the naive layer‐2 broadcast approach. While the former incurs high cost in all devices, the latter creates broadcast storm in the whole network. This paper aims to propose a cross‐layer heterogeneous routing protocol for solving this problem without the adverse effects of the intuitive approaches.

Design/methodology/approach

A conceptual discussion and approach are employed.

Findings

The simulation results validate the efficiency of the proposed protocol.

Originality/value

The paper provides details of a method for routing selection in WMNs.

Details

International Journal of Pervasive Computing and Communications, vol. 4 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 September 2017

Shailja Agnihotri and K.R. Ramkumar

The purpose of this paper is to provide insight into various swarm intelligence-based routing protocols for Internet of Things (IoT), which are currently available for the Mobile…

519

Abstract

Purpose

The purpose of this paper is to provide insight into various swarm intelligence-based routing protocols for Internet of Things (IoT), which are currently available for the Mobile Ad-hoc networks (MANETs) and wireless sensor networks (WSNs). There are several issues which are limiting the growth of IoT. These include privacy, security, reliability, link failures, routing, heterogeneity, etc. The routing issues of MANETs and WSNs impose almost the same requirements for IoT routing mechanism. The recent work of worldwide researchers is focused on this area.

Design/methodology/approach

The paper provides the literature review for various standard routing protocols. The different comparative analysis of the routing protocols is done. The paper surveys various routing protocols available for the seamless connectivity of things in IoT. Various features, advantages and challenges of the said protocols are discussed. The protocols are based on the principles of swarm intelligence. Swarm intelligence is applied to achieve optimality and efficiency in solving the complex, multi-hop and dynamic requirements of the wireless networks. The application of the ant colony optimization technique tries to provide answers to many routing issues.

Findings

Using the swarm intelligence and ant colony optimization principles, it has been seen that the protocols’ efficiency definitely increases and also provides more scope for the development of more robust, reliable and efficient routing protocols for the IoT.

Research limitations/implications

The existing protocols do not solve all reliability issues and efficient routing is still not achieved completely. As of now no techniques or protocols are efficient enough to cover all the issues and provide the solution. There is a need to develop new protocols for the communication which will cater to all these needs. Efficient and scalable routing protocols adaptable to different scenarios and network size variation capable to find optimal routes are required.

Practical implications

The various routing protocols are discussed and there is also an introduction to new parameters which can strengthen the protocols. This can lead to encouragement of readers, as well as researchers, to analyze and develop new routing algorithms.

Social implications

The paper provides better understanding of the various routing protocols and provides better comparative analysis for the use of swarm-based research methodology in the development of routing algorithms exclusively for the IoT.

Originality/value

This is a review paper which discusses the various routing protocols available for MANETs and WSNs and provides the groundwork for the development of new intelligent routing protocols for IoT.

Details

International Journal of Pervasive Computing and Communications, vol. 13 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 20 November 2009

Roy Friedman and Galya Tcharny

Mobile ad‐hoc networks (MANET) are networks that are formed in an ad‐hoc manner by collections of devices that are equipped with wireless communication capabilities, such as the…

Abstract

Purpose

Mobile ad‐hoc networks (MANET) are networks that are formed in an ad‐hoc manner by collections of devices that are equipped with wireless communication capabilities, such as the popular WiFi (IEEE 802.11b) standard. As the hardware technology and networking protocols for MANETs become mature and ubiquitous, the main barrier for MANETs to become widely used is applications. Like in other areas of distributed computing, in order to expedite the development of applications, there is a need for middleware services that support these applications. Failure detection has been identified as a basic component for many reliable distributed middleware services and applications. This paper aims to investigate this issue.

Design/methodology/approach

This paper presents an adaptation of a gossip‐based failure detection protocol to MANETs, and an evaluation by extensive simulations of this protocol's performance in such networks.

Findings

The results can be viewed as a feasibility check for implementing failure detection in MANETs, and the conclusions drawn from them can be used to motivate and improve future implementations of both a failure detection component and of applications and middleware services relying on such a component.

Originality/value

This paper presents an adaptation of a gossip‐based failure detection protocol to MANET environments, and presents an extensive simulation‐based performance study of this protocol in MANETs with various parameters.

Details

International Journal of Pervasive Computing and Communications, vol. 5 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 17 April 2009

Ruey‐Shin Chen, Louis R. Chao, Ching‐Piao Chen and Chih‐Hung Tsai

Video transmission effectiveness in the Ad Hoc network is becoming important recently, if different routing protocols are applied. Some researchers conclude that the reactive…

Abstract

Video transmission effectiveness in the Ad Hoc network is becoming important recently, if different routing protocols are applied. Some researchers conclude that the reactive protocols are better for file transfer protocol (FTP) and constant bit rate (CBR) or hypertext transfer protocol (HTTP) transmission in an Ad Hoc wireless network but the performance report of video transmission is not much. This study adopts Qualnet (Network Simulator) as a simulation tool for environmental designing and performance testing, and employs an experimental design with eight groups. Our experiment shows that: (1) The performance of AODV (reactive) protocol is better than DSDV, ZRP and DSR when the transmission load has only one video stream; (2) Proactive (DSDV) and Hybrid protocols (ZRP) are better for a smaller Ad Hoc network when it transmits a video stream with some applications (VoIP, FTP and CBR). We conclude that packet loss rate is sensitive to the quality of video transmission and it has negative relationship with Peak Signal‐to‐Noise Ratio (PSNR) value. In addition, our experiment also shows that PSNR is a simple Metric for the performance evaluation of video transmission.

Details

Asian Journal on Quality, vol. 10 no. 1
Type: Research Article
ISSN: 1598-2688

Keywords

1 – 10 of 14