Search results

1 – 10 of 75
Open Access
Article
Publication date: 16 July 2024

Ruan du Rand, Kevin Jamison and Barbara Huyssen

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while…

Abstract

Purpose

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while adhering to onboard system constraints and fitment specifications.

Design/methodology/approach

Initial geometric layout determination used empirical methods. Performance approximation on the aircraft with added fairings and stabilising fin configurations was conducted using a panel code. Verification of loads was done using a full steady Reynolds-averaged Navier–Stokes solver, validated against published wind tunnel test data. Acceptable load envelope for the aircraft pylon was defined using two already-certified stores with known flight envelopes.

Findings

Re-lofting the pod’s geometry enabled meeting all geometric and pylon load constraints. However, due to the pod's large size, re-lofting alone was not adequate to respect aircraft/pylon load limitations. A flight restriction was imposed on the aircraft’s roll rate to reduce yaw and roll moments within allowable limits.

Practical implications

The geometry of an electronics pod was redesigned to maximise the permissible flight envelope on its carriage aircraft while respecting the safe carriage load limits determined for its store pylon. Aircraft carriage load constraints must be determined upfront when considering the design of fast-jet electronic pods.

Originality/value

A process for determining the unknown load constraints of a carriage aircraft by analogy is presented, along with the process of tailoring the geometry of an electronics pod to respect aerodynamic load and geometric constraints.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 5 June 2024

Diwan U. Odendaal, Lelanie Smith, Kenneth J. Craig and Drewan S. Sanders

The purpose of this study is to re-evaluation fuselage design when the main wing’s has the ability to fulfill stability requirements without the need for a tailplane. The…

Abstract

Purpose

The purpose of this study is to re-evaluation fuselage design when the main wing’s has the ability to fulfill stability requirements without the need for a tailplane. The aerodynamic requirements of the fuselage usually involve a trade-off between reducing drag and providing enough length for positioning the empennage to ensure stability. However, if the main wing can fulfill the stability requirements without the need for a tailplane, then the fuselage design requirements can be re-evaluated. The optimisation of the fuselage can then include reducing drag and also providing a component of lift amongst other potential new requirements.

Design/methodology/approach

A careful investigation of parameterisation and trade-off optimisation methods to create such fuselage shapes was performed. The A320 Neo aircraft is optimised using a parameterised 3D fuselage model constructed with a modified PARSEC method and the SHERPA optimisation strategy, which was validated through three case studies. The geometry adjustments in relation to the specific flow phenomena are considered for the three optimal designs to investigate the influencing factors that should be considered for further optimisation.

Findings

The top three aerodynamic designs show a distinctive characteristic in the low aspect ratio thick wing-like aftbody that has pressure drag penalties, and the aftbody camber increased surface area notably improved the fuselage’s lift characteristics.

Originality/value

This work contributes to the development of a novel set of design requirements for a fuselage, free from the constraints imposed by stability requirements. By gaining insights into the flow phenomena that influence geometric designs when a lift requirement is introduced to the fuselage, we can understand how the fuselage configuration was optimised. This research lays the groundwork for identifying innovative design criteria that could extend into the integration of propulsion of the aftbody.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 September 2024

Renato Zona, Luca Esposito, Simone Palladino and Vincenzo Minutolo

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent…

Abstract

Purpose

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent continuum. The proposed investigation deals with the mechanical characterization of the heterogeneous material structured metamaterials through analyzing the ultimate strength using the limit analysis of the Representative Volume Element (RVE). To get the desired material strength, a novel finite element formulation based on the derivation of self-equilibrated solutions through the finite elements devoted to calculating the lower bound theorem has been implemented together with the limit analysis in Melàn’s formulation.

Design/methodology/approach

The finite element formulation is based on discrete mapping of Volterra dislocations in the structure using isoparametric representation. Using standard finite element techniques, the linear operator V, which relates the self-equilibrated internal solicitation to displacement-like nodal parameters, has been built through finite element discretization of displacement and strain.

Findings

The proposed work presented an elastic homogenization of the mechanical properties of an elementary cell with a geometry known in the literature, the isotropic truss. The matrix of elastic constants was calculated by subjecting the RVE to numerical load tests, simulated with a commercial FEM calculation code. This step showed the dependence of the isotropy properties, verified with Zener theory, on the density of the RVE. The isotropy condition of the material is only achieved for certain section ratios between body-centered cubic (BCC) and face-centered cubic (FCC), neglecting flexural effects at the nodes. The density that satisfies Zener’s conditions represents the isotropic geomatics of the isotropic truss.

Originality/value

For the isotropic case, the VFEM procedure was used to evaluate the isotropy of the limit domain and was compared with the Mises–Schleicher limit domain. The evaluation of residual ductility and dissipation energy allowed a measurement parameter for the limit anisotropy to be defined. The novelty of the proposal consisted in the formulation of both the linearized and the nonlinear limit locus of the material; hence, it furnished the starting point for further limit analysis of the structures whose elementary volume has been described through the proposed approach.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 September 2024

Sinan Obaidat, Mohammad Firas Tamimi, Ahmad Mumani and Basem Alkhaleel

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and…

Abstract

Purpose

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and American Society for Testing and Materials (ASTM) D638’s Types I and II test standards.

Design/methodology/approach

The prediction approach combines artificial neural network (ANN) and finite element analysis (FEA), Monte Carlo simulation (MCS) and experimental testing for estimating tensile behavior for FDM considering uncertainties of input parameters. FEA with variance-based sensitivity analysis is used to quantify the impacts of uncertain variables, resulting in determining the significant variables for use in the ANN model. ANN surrogates FEA models of ASTM D638’s Types I and II standards to assess their prediction capabilities using MCS. The developed model is applied for testing the tensile behavior of PLA given probabilistic variables of geometry and material properties.

Findings

The results demonstrate that Type I is more appropriate than Type II for predicting tensile behavior under uncertainty. With a training accuracy of 98% and proven presence of overfitting, the tensile behavior can be successfully modeled using predictive methods that consider the probabilistic nature of input parameters. The proposed approach is generic and can be used for other testing standards, input parameters, materials and response variables.

Originality/value

Using the proposed predictive approach, to the best of the authors’ knowledge, the tensile behavior of PLA is predicted for the first time considering uncertainties of input parameters. Also, incorporating global sensitivity analysis for determining the most contributing parameters influencing the tensile behavior has not yet been studied for FDM. The use of only significant variables for FEA, ANN and MCS minimizes the computational effort, allowing to simulate more runs with reduced number of variables within acceptable time.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 July 2024

Fredrick Mwania, Maina Maringa, Joseph Nsengimana and Jacobus Gert van der Walt

The current analysis was conducted to investigate the quality of surfaces and geometry of tracks printed using PolyMideTM CoPA, PolymaxTM PC and PolyMideTM PA6-CF materials…

Abstract

Purpose

The current analysis was conducted to investigate the quality of surfaces and geometry of tracks printed using PolyMideTM CoPA, PolymaxTM PC and PolyMideTM PA6-CF materials through fused deposition modelling (FDM). This study also examined the degree of fusion of adjacent filaments (tracks) to approximate the optimal process parameters of the three materials.

Design/methodology/approach

Images of fused adjacent filaments were acquired using scanning electron microscopy (SEM), after which, they were analysed using Image J Software and Minitab Software to determine the optimal process parameters.

Findings

The optimal process parameters for PolyMideTM CoPA are 0.25 mm, 40 mm/s, −0.10 mm, 255°C and 0.50 mm for layer thickness, printing speed, hatch spacing, extrusion temperature and extrusion width, respectively. It was also concluded that the optimal process parameters for PolymaxTM PC are 0.30 mm, 40 mm/s, 0.00 mm, 260°C and 0.6 mm for layer thickness, printing speed, hatch spacing, extrusion temperature and extrusion width, respectively.

Research limitations/implications

It was difficult to separate tracks printed using PolyMideTM PA6-CF from the support structure, making it impossible to examine and determine their degree of fusion using SEM.

Social implications

The study provides more knowledge on FDM, which is one of the leading additive manufacturing technology for polymers. The information provided in this study helps in continued uptake of the technique, which can help create job opportunities, especially among the youth and young engineers.

Originality/value

This study proposes a new and a more accurate method for optimising process parameters of FDM at meso-scale level.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 June 2024

Ludovico Martignoni, Andrea Vegro, Sara Candidori, Mohammad Qasim Shaikh, Sundar V. Atre, Serena Graziosi and Riccardo Casati

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless…

Abstract

Purpose

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless steel filament and their influence on the porosity and mechanical properties of the printed parts. It also investigates the feasibility of manufacturing complex geometries, including strut-and-node and triply periodic minimal surface lattices.

Design/methodology/approach

A three-step experimental campaign was carried out. Firstly, the printing parameters were evaluated by analysing the green parts: porosity and density measurements were used to define the best printing profile. Then, the microstructure and porosity of the sintered parts were investigated using light optical and scanning electron microscopy, while their mechanical properties were obtained through tensile tests. Finally, manufacturability limits were explored with reference samples and cellular structures having different topologies.

Findings

The choice of printing parameters drastically influences the porosity of green parts. A printing profile which enables reaching a relative density above 99% has been identified. However, voids characterise the sintered components in parallel planes at the interfaces between layers, which inevitably affect their mechanical properties. Lattice structures and complex geometries can be effectively printed, debinded, and sintered if properly dimensioned to fulfil printing constraints.

Originality/value

This study provides an extensive analysis of the printing parameters for the 316L filament used and an in-depth investigation of the potential of the metal fused filament fabrication technology in printing lightweight structures.

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built…

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 March 2023

Ghassan Almasabha, Ali Shehadeh, Odey Alshboul and Omar Al Hattamleh

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and…

Abstract

Purpose

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and professionals in selecting the most cost-effective buried reinforced concrete pipelines under deep embankment soil with minor structural reinforcement while meeting shear stress requirements, safety and reliability constraints.

Design/methodology/approach

It is unfeasible to experimentally assess pipeline efficiency with high soil fill depth. Thus, to fill this gap, this research uses a dependable finite element analysis (FEA) to conduct a parametric study and carry out such an issue. This research considered reinforced concrete pipes with diameters of 25, 50, 75, 100, 125 and 150 cm at depths of 5, 10, 15 and 20 m.

Findings

According to this research, the proposed best pipeline diameter-to-thickness (D/T) proportions for soil embankment heights 5, 10, 15 and 20 m are 8.75, 4.8, 3.5 and 3.1, correspondingly. The cost-effective reinforced concrete (RC) pipeline thickness dramatically rises if the soil embankment reaches 20 m, indicating that the soil embankment depth highly influences it. Most of the analyzed reinforced concrete pipelines had a maximum deflection value of less than 1 cm, telling that the FEA accurately identified the pipeline width, needed flexural steel reinforcement, and concrete crack width while avoiding significant distortion.

Originality/value

The cost-effective thickness for the analyzed structured concrete pipes was calculated by considering the lowest required value of steel reinforcement. An algorithm was developed based on the parametric scientific findings to predict the ideal pipeline D/T ratio. A construction case study was also shown to assist architects and professionals in determining the best reinforced concrete pipeline geometry for a specific soil embankment height.

Details

Construction Innovation , vol. 24 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 11 September 2024

Lindsey Bezek and Kwan-Soo Lee

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing…

Abstract

Purpose

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing the post-process, particularly sintering, conditions to consistently produce geometrically accurate and mechanically robust parts. This study aims to investigate how sintering temperature affects feature resolution and flexural properties of silica-based parts formed by vat photopolymerization (VPP) AM.

Design/methodology/approach

Test artifacts were designed to evaluate features of different sizes, shapes and orientations, and three-point bend specimens printed in multiple orientations were used to evaluate mechanical properties. Sintering temperatures were varied between 1000°C and 1300°C.

Findings

Deviations from designed dimensions often increased with higher sintering temperatures and/or larger features. Higher sintering temperatures yielded parts with higher strength and lower strain at break. Many features exhibited defects, often dependent on geometry and sintering temperature, highlighting the need for further analysis of debinding and sintering parameters.

Originality/value

To the best of the authors’ knowledge, this is the first time test artifacts have been designed for ceramic VPP. This work also offers insights into the effect of sintering temperature and print orientation on flexural properties. These results provide design guidelines for a particular material, while the methodology outlined for assessing feature resolution and flexural strength is broadly applicable to other ceramics, enabling more predictable part performance when considering the future design and manufacture of complex ceramic parts.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 21 December 2023

Rafael Pereira Ferreira, Louriel Oliveira Vilarinho and Americo Scotti

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards…

Abstract

Purpose

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.

Design/methodology/approach

For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).

Findings

The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.

Originality/value

This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 75