Search results

1 – 10 of 45
Article
Publication date: 31 May 2024

Mario Versaci, Giovanni Angiulli, Luisa Angela Fattorusso, Paolo Di Barba and Alessandra Jannelli

Based on previous results of the existence, uniqueness, and regularity conditions for a continuous dynamic model for a parallel-plate electrostatic…

Abstract

Purpose

Based on previous results of the existence, uniqueness, and regularity conditions for a continuous dynamic model for a parallel-plate electrostatic micro-electron-mechanical-systems with the fringing field, the purpose of this paper concerns a Galerkin-FEM procedure for deformable element deflection recovery. The deflection profiles are reconstructed by assigning the dielectric properties of the moving element. Furthermore, the device’s use conditions and the deformable element’s mechanical stresses are presented and discussed.

Design/methodology/approach

The Galerkin-FEM approach is based on weighted residuals, where the integrals appearing in the solution equation have been solved using the Crank–Nicolson algorithm.

Findings

Based on the connection between the fringing field and the electrostatic force, the proposed approach reconstructs the deflection of the deformable element, satisfying the conditions of existence, uniqueness and regularity. The influence of the electromechanical properties of the deformable plate on the method has also been considered and evaluated.

Research limitations/implications

The developed analytical model focused on a rectangular geometry.

Practical implications

The device studied is suitable for industrial and biomedical applications.

Originality/value

This paper proposed numerical approach characterized by low CPU time enables the creation of virtual prototypes that can be analyzed with significant cost reduction and increased productivity.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 September 2023

Chen Jiang, Ekene Paul Odibelu and Guo Zhou

This paper aims to investigate the performance of two novel numerical methods, the face-based smoothed finite element method (FS-FEM) and the edge-based smoothed finite element…

Abstract

Purpose

This paper aims to investigate the performance of two novel numerical methods, the face-based smoothed finite element method (FS-FEM) and the edge-based smoothed finite element method (ES-FEM), which employ linear tetrahedral elements, for the purpose of strength assessment of a high-speed train hollow axle.

Design/methodology/approach

The calculation of stress for the wheelset, comprising an axle and two wheels, is facilitated through the application of the European axle strength design standard. This standard assists in the implementation of loading and boundary conditions and is exemplified by the typical CRH2 high-speed train wheelset. To evaluate the performance of these two methods, a hollow cylinder cantilever beam is first used as a benchmark to compare the present methods with other existing methods. Then, the strength analysis of a real wheelset model with a hollow axle is performed using different numerical methods.

Findings

The results of deflection and stress show that FS-FEM and ES-FEM offer higher accuracy and better convergence than FEM using linear tetrahedral elements. ES-FEM exhibits a superior performance to that of FS-FEM using linear tetrahedral elements, showing accuracy and convergence close to FEM using hexahedral elements.

Originality/value

This study channels the novel methods (FS-FEM and ES-FEM) in the static stress analysis of a railway wheelset. Based on the careful testing of FS-FEM and ES-FEM, both methods hold promise as more efficient tools for the strength analysis of complex railway structures.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 June 2024

Arooj Tanveer, Sami Ul Haq, Muhammad Bilal Ashraf, Muhammad Usman Ashraf and R. Nawaz

This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers…

53

Abstract

Purpose

This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers magnetohydrodynamics, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

Design/methodology/approach

After reducing the system of dimensional equations to dimensionless equations, the authors use the Galerkin finite element method to solve them numerically. Geometric parameters affect heating efficiency; thus, the authors use flow metrics such as the Reynold number Re, magnetic parameter M, volume fraction coefficient, heat absorption and Eckert number Ec. The authors use the finite volume method to solve the governing equations after converting them to dimensionless form. The authors also try the artificial neural network method to predict the innovative cavity’s heat response in future scenarios. Transition state charts, regression analysis, MSE and error histograms accelerate, smooth and accurately converge solutions.

Findings

As the magnetic parameter and Eckert number increase, the enclosure emits more heat. As Reynold and volume fraction coefficients rise, the Nusselt number falls. It rose as magnetic, Eckert and heat absorption characteristics increased. The average Nusselt number rises with Reynolds and volume fraction coefficients. The magnetic, Eckert and heat absorption characteristics have inverse values.

Originality/value

This study numerically investigates heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers MHD, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Bengisen Pekmen Geridonmez and Hakan Oztop

The purpose of this study is to investigate the interaction between magnetotactic bacteria and Fe3O4–water nanofluid (NF) in a wavy enclosure in the presence of 2D natural…

Abstract

Purpose

The purpose of this study is to investigate the interaction between magnetotactic bacteria and Fe3O4–water nanofluid (NF) in a wavy enclosure in the presence of 2D natural convection flow.

Design/methodology/approach

Uniform magnetic field (MF), Brownian and thermophoresis effects are also contemplated. The dimensionless, time-dependent equations are governed by stream function, vorticity, energy, nanoparticle concentration and number of bacteria. Radial basis function-based finite difference method for the space derivatives and the second-order backward differentiation formula for the time derivatives are performed. Numerical outputs in view of isolines as well as average Nusselt number, average Sherwood number and flux density of microorganisms are presented.

Findings

Convective mass transfer rises if any of Lewis number, Peclet number, Rayleigh number, bioconvection Rayleigh number and Brownian motion parameter increases, and the flux density of microorganisms is an increasing function of Rayleigh number, bioconvection Rayleigh number, Peclet number, Brownian and thermophoresis parameters. The rise in buoyancy ratio parameter between 0.1 and 1 and the rise in Hartmann number between 0 and 50 reduce all outputs average Nusselt, average Sherwood numbers and flux density of microorganisms.

Research limitations/implications

This study implies the importance of the presence of magnetotactic bacteria and magnetite nanoparticles inside a host fluid in view of heat transfer and fluid flow. The limitation is to check the efficiency on numerical aspect. Experimental observations would be more effective.

Practical implications

In practical point of view, in a heat transfer and fluid flow system involving magnetite nanoparticles, the inclusion of magnetotactic bacteria and MF effect provide control over fluid flow and heat transfer.

Social implications

This is a scientific study. However, this idea may be extended to sustainable energy or biofuel studies, too. This means that a better world may create better social environment between people.

Originality/value

The presence of magnetotactic bacteria inside a Fe3O4–water NF under the effect of a MF is a good controller on fluid flow and heat transfer. Since the magnetotactic bacteria is fed by nanoparticles Fe3O4 which has strong magnetic property, varying nanoparticle concentration and Brownian and thermophoresis effects are first considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 28 February 2023

M.S. Daoussa Haggar and M. Mbehou

This paper focuses on the unconditionally optimal error estimates of a linearized second-order scheme for a nonlocal nonlinear parabolic problem. The first step of the scheme is…

Abstract

Purpose

This paper focuses on the unconditionally optimal error estimates of a linearized second-order scheme for a nonlocal nonlinear parabolic problem. The first step of the scheme is based on Crank–Nicholson method while the second step is the second-order BDF method.

Design/methodology/approach

A rigorous error analysis is done, and optimal L2 error estimates are derived using the error splitting technique. Some numerical simulations are presented to confirm the study’s theoretical analysis.

Findings

Optimal L2 error estimates and energy norm.

Originality/value

The goal of this research article is to present and establish the unconditionally optimal error estimates of a linearized second-order BDF finite element scheme for the reaction-diffusion problem. An optimal error estimate for the proposed methods is derived by using the temporal-spatial error splitting techniques, which split the error between the exact solution and the numerical solution into two parts, that is, the temporal error and the spatial error. Since the spatial error is not dependent on the time step, the boundedness of the numerical solution in L∞-norm follows an inverse inequality immediately without any restriction on the grid mesh.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 14 November 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Shurooq Kamel Abd Al-Khafaji

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is…

Abstract

Purpose

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is the main aim of most researchers. This paper devotes to developing a novel spectral algorithm to solve the FitzHugh–Nagumo models with space fractional derivatives.

Design/methodology/approach

The fractional derivative is defined based upon the Riesz derivative. First, a second-order finite difference formulation is used to approximate the time derivative. Then, the Jacobi spectral collocation method is employed to discrete the spatial variables. On the other hand, authors assume that the approximate solution is a linear combination of special polynomials which are obtained from the Jacobi polynomials, and also there exists Riesz fractional derivative based on the Jacobi polynomials. Also, a reduced order plan, such as proper orthogonal decomposition (POD) method, has been utilized.

Findings

A fast high-order numerical method to decrease the elapsed CPU time has been constructed for solving systems of space fractional PDEs.

Originality/value

The spectral collocation method is combined with the POD idea to solve the system of space-fractional PDEs. The numerical results are acceptable and efficient for the main mathematical model.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 January 2024

Fatih Selimefendigil and Hakan F. Oztop

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The…

Abstract

Purpose

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The cooling system has double rotating cylinders.

Design/methodology/approach

Cross-flow ratios (CFR) ranging from 0.1 to 1, magnetic field strength (Ha) ranging from 0 to 50 and cylinder rotation speed (Rew) ranging from −5,000 to 5,000 are the relevant parameters that are included in the numerical analysis. Finite element method is used as solution technique. Radial basis networks are used for the prediction of average Nusselt number (Nu), average surface temperature of the panel and temperature uniformity effects when varying the impacts of cross-flow, magnetic field and rotations of the double cylinder in the cooling channel.

Findings

The effect of CFR on cooling efficiency and temperature uniformity is favorable. By raising the CFR to the highest value under the magnetic field, the average Nu can rise by up to 18.6%, while the temperature drop and temperature difference are obtained as 1.87°C and 3.72°C. Without cylinders, magnetic field improves the cooling performance, while average Nu increases to 4.5% and 8.8% at CR = 0.1 and CR = 1, respectively. When the magnetic field is the strongest with cylinders in channel at CFR = 1, temperature difference (ΔT) is obtained as 2.5 °C. The rotational impacts on thermal performance are more significant when the cross-flow effects are weak (CFR = 0.1) compared to when they are substantial (CFR = 1). Cases without a cylinder have the worst performance for both weak and severe cross-flow effects, whereas using two rotating cylinders increases cooling performance and temperature uniformity for the conductive panel. The average surface temperature lowers by 1.2°C at CFR = 0.1 and 0.5°C at CFR = 1 when the worst and best situations are compared.

Originality/value

The outcomes are relevant in the design and optimization-based studies for electric cooling, photo-voltaic cooling and battery thermal management.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Deepak Byotra and Sanjay Sharma

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing…

Abstract

Purpose

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing by comparing six different texture shapes like triangle, chevron, arc, circle, rectangle and elliptical applied in pressure-increasing region under various geometrical and operating conditions.

Design/methodology/approach

The finite element method approach has been employed to solve governing Reynold’s equation, assuming iso-viscous Newtonian fluid, for computation of performance parameters like stiffness and damping coefficient, threshold speed, etc. By using a regression model, the impact of adding nanoparticles Al2O3 and CuO to the base lubricant on viscosity variation is calculated for selected temperature ranges and weight fractions of nanoparticles.

Findings

The arc-shaped texture with an area density of 28.27%, eccentricity ratio of 0.2 and texture depth of 0.6 exhibited 35.22% higher direct stiffness and 41.4% higher damping coefficient compared to the lowest value in the circle-shaped texture. Increasing the number of arc-shaped textures on the bearing surface with low area density led to declining stiffness and damping parameters. However, with nanoparticle additives, the arc-shaped texture further showed 10.75% and 8.11% improvement in stiffness and 9.99% and 4.87% enhancement in damping coefficient for Al2O3 and CuO, respectively, at 90 °C temperature and 0.5% weight fraction.

Originality/value

By understanding the influence of texture shapes on the dynamic characteristics, engineers can design bearings that exhibit improved stability and enhance overall performance.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 June 2023

Teng Wen, Xiaoyun Wei, Xuebao Li, Boyuan Cao and Zhibin Zhao

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal…

Abstract

Purpose

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal periodic voltage excitation.

Design/methodology/approach

Firstly, the boundary value problem of the transient electric field in the frequency domain is described, and the finite element equation of the FD-FEM is derived by Galerkin’s method. Secondly, the constrained electric field equation on the boundary in the frequency domain (FD-CEFEB) is also derived, which can solve the electric field intensity on the boundary and the dielectric interface with high accuracy. Thirdly, the calculation procedures of the FD-FEM with FD-CEFEB are introduced in detail. Finally, a numerical example of the press-packed insulated gate bipolar transistor under the working condition of the repetitive turn-on and turn-off is given.

Findings

The FD-CEFEB improves numerical accuracy of electric field intensity on the boundary and interfacial charge density, which can be achieved by modifying the existing FD-FEMs’ code in appropriate steps. Moreover, the proposed FD-FEM and the FD-CEFEB will only increase calculation costs by a little compared with the traditional FD-FEMs.

Originality/value

The FD-CEFEB can directly solve the electric field intensity on the boundary and the dielectric interface with high accuracy. This paper provides a new FD-FEM for the transient electric field in the non-sinusoidal steady state with high accuracy, which is suitable for combined insulation structure with a long time constant.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 45