Search results

1 – 10 of 579
Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 2023

Yuzhen Zhao, Mingxu Zhao, Huimin Zhang, Xiangrong Zhao, Yang Zhao, Zhun Guo, Jianjing Gao, Cheng Ma and Yongming Zhang

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Abstract

Purpose

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Design/methodology/approach

A series of novel symmetric and asymmetric compounds possessing third-order NLO properties were synthesized using 1,3,5-tribromobenzene as the basis. The photophysical and electrochemical properties, as well as the click reactions, were characterized by means of UV–VIS–NIR absorption spectroscopy and cyclic voltammetry.

Findings

The donor–acceptor chromophores were inserted into compound, making the molecule to have a broader absorption in the near-infrared regions and a narrower optical and electrochemical band gap. It also formed an electron-delocalized organic system, which has larger effects on achieving a third-order NLO response. The third-order NLO phenomenon of benzene ring complexes was experimentally studied at 532 nm using Z-scan technology, and some compounds showed the expected NLO properties.

Originality/value

The click products exhibit more NLO phenomena by performing different click combinations to the side groups, opening new perspectives on using the system in a variety of photoelectric applications.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 19 February 2024

Anita Ollár

There is a renowned interest in adaptability as an important principle for achieving circularity in the built environment. Circular building adaptability (CBA) could enable…

Abstract

Purpose

There is a renowned interest in adaptability as an important principle for achieving circularity in the built environment. Circular building adaptability (CBA) could enable long-term building utilisation and flexible use of space with limited material flows. This paper identifies and analyses design strategies facilitating CBA to propose a framework for enhancing the implementation of the concept.

Design/methodology/approach

Interviews were conducted with professionals experienced in circular building design to explore the questions “How do currently applied design strategies enable CBA?” and “How can CBA be implemented through a conceptual design framework?”. The interviews encircled multi-residential building examples to identify currently applied circular design strategies. The interviews were analysed through qualitative content analysis using CBA determinants as a coding framework.

Findings

The results show that all ten CBA determinants are supported by design strategies applied in current circular building design. However, some determinants are more supported than others, and design strategies are often employed without explicitly considering adaptability. The design strategies that enable adaptability offer long-term solutions requiring large-scale modifications rather than facilitating low-impact adaptation by dwelling occupants. The proposed conceptual design framework could aid architects in resolving these issues and implementing CBA in their circular building design.

Originality/value

This paper’s contribution to CBA is threefold. It demonstrates design strategies facilitating CBA, proposes a conceptual design framework to apply the concept and identifies the need for a more comprehensive application of available adaptability strategies.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 7
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 24 April 2024

Dejing Zhou, Yanming Xia, Zhiming Gao and Wenbin Hu

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

Abstract

Purpose

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

Design/methodology/approach

Polarization curve tests, immersion experiments and transmission electron microscopy analysis were used to study the corrosion behavior and tensile properties of the sheets before and after brazing and aging.

Findings

The strength of the sheet is weakened after brazing due to brittle eutectic phases, and recovered after aging due to enhanced precipitation strengthening in the AA7072 interlayer. The core of nonbrazed sheets cannot be protected due to the significant galvanic coupling effect between the intermetallic particles and the substrate. Brazing and aging treatments promote the redissolved of second phased and limit corrosion along the eutectic region in the clad, allowing the core to be protected.

Originality/value

AA7xxx alloy was added to conventional brazed sheets to form a novel Al alloy composite sheet with AA4xxx/AA7xxx/AA3xxx structure. The strengthening and corrosion mechanism of the sheet was proposed. The added interlayer can sacrificially protect the core from corrosion and improves strength after aging treatment.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 December 2023

Tejendra Singh Gaur, Vinod Yadav, Sameer Mittal and Milind Kumar Sharma

Waste generated from electrical and electronic equipment, collectively known as E-waste, remains a persistent environmental, economic and social problem. Sustainable E-waste…

Abstract

Purpose

Waste generated from electrical and electronic equipment, collectively known as E-waste, remains a persistent environmental, economic and social problem. Sustainable E-waste management (EWM) has numerous benefits, such as preventing electronic waste from entering landfills, reducing the need for virgin materials by recovering valuable materials from recycling and lowering greenhouse gas emissions. Circular economy (CE) practices are considered the initial steps toward sustainable EWM, but some hurdles have been reported in the adoption of these practices. Therefore, the current study aims to identify the common CE practices, sustainability of the EWM process and the challenges in EWM, and to develop a conceptual framework for effective EWM.

Design/methodology/approach

Very few studies have proposed frameworks that acknowledge the challenges and CE practices of EWM. To fill this gap, a systematic literature review (SLR) was performed, and 169 research articles were explored.

Findings

A total of seven challenges in the adoption of effective EWM were identified: rules and policy, infrastructure, consumer behaviour, informal sectors, community culture, technology and economy. Eight common CE practices were also found for effective EWM: reuse, recycle, remanufacturing, refurbishment, repair, reduce, recover and repurpose.

Originality/value

A conceptual framework guiding sustainable EWM was proposed, which includes solutions for the identified challenges, and CE practices with sustainable benefits.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Yini Wei, Guiqiang Diao and Zilun Tang

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in…

Abstract

Purpose

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in terms of articles meant to be worn, their prominence among devices and systems meant for cadence is overshadowed by electronic products such as accelerometers, wristbands and smart phones. Athletes and sports enthusiasts using knee sleeves should be able to track their performances and monitor workout progress without the need to carry other devices with no direct sport utility, such as wristbands and wearable accelerometers. The purpose of this study thus is to contribute to the broad area of wearable devices for cadence application by developing a cheap but effective and efficient stride measurement system based on a knee sleeve.

Design/methodology/approach

A textile strain sensor is designed by weft knitting silver-plated nylon yarn together with nylon DTY and covered elastic yarn using a 1 × 1 rib structure. The area occupied by the silver-plated yarn within the structure served as the strain sensor. It worked such that, upon being subjected to stress, the electrical resistance of the sensor increases and in turn, is restored when the stress is removed. The strip with the sensor is knitted separately and subsequently sewn to the knee sleeve. The knee sleeve is then connected to a custom-made signal acquisition and processing system. A volunteer was employed for a wearer trial.

Findings

Experimental results establish that the number of strides taken by the wearer can easily be correlated to the knee flexion and extension cycles of the wearer. The number of peaks computed by the signal acquisition and processing system is therefore counted to represent stride per minute. Therefore, the sensor is able to effectively count the number of strides taken by the user per minute. The coefficient of variation of over-ground test results yielded 0.03%, and stair climbing also obtained 0.14%, an indication of very high sensor repeatability.

Research limitations/implications

The study was conducted using limited number of volunteers for the wearer trials.

Practical implications

By embedding textile piezoresistive sensors in some specific garments and or accessories, physical activity such as gait and its related data can be effectively measured.

Originality/value

To the best of our knowledge, this is the first application of piezoresistive sensing in the knee sleeve for stride estimation. Also, this study establishes that it is possible to attach (sew) already-knit textile strain sensors to apparel to effectuate smart functionality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 April 2024

Kristijan Breznik, Naraphorn Paoprasert, Klara Novak and Sasitorn Srisawadi

This study aims to identify research trends and technological evolution in the polymer three-dimensional (3D) printing process that can effectively identify the direction of…

Abstract

Purpose

This study aims to identify research trends and technological evolution in the polymer three-dimensional (3D) printing process that can effectively identify the direction of technological advancement and progress of acceptance in both society and key manufacturing industries.

Design/methodology/approach

The Scopus database was used to collect data on polymer 3D printing papers. This study uses bibliometric approach along with network analytic techniques to identify and discuss the most important countries and their scientific collaboration, compares income groups and analyses keyword trends.

Findings

It was found that top research production results from heavy investments in research and development. The USA has the highest number of papers among the high-income countries. However, scientific production in the other two income groups is strongly dominated by China and India. Keyword analysis shows that countries with lower incomes in certain areas, such as composite and bioprinting, have fallen behind other groups over time. International collaborations were suggested as mechanisms for those countries to catch up with the current research trends. The evolution of the research field, which started with a focus on 3D printing processes and shifted to printed part designs and their applications, was discussed. The advancement of the research topic suggests that translational research on polymer 3D printing has been led mainly by research production from higher-income countries and countries with large research and development investments.

Originality/value

Previous studies have conducted performance analysis, science mapping and network analysis in the field of 3D printing, but none have focused on global research trends classified by country income. This study has conducted a bibliometric analysis and compared the outputs according to various income levels according to the World Bank classification.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 April 2024

Yifan Guo, Yanling Guo, Jian Li, Yangwei Wang, Deyu Meng, Haoyu Zhang and Jiaming Dai

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering…

Abstract

Purpose

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering method and has reached the bottleneck of efficiency improvement. This study aims to develop an image-shaped laser sintering (ISLS) system based on a digital micromirror device (DMD) to address this problem. The ISLS system uses an image-shaped laser light source with a size of 16 mm × 25.6 mm instead of the traditional SLS point-laser light source.

Design/methodology/approach

The ISLS system achieves large-area image-shaped sintering of polymer powder materials by moving the laser light source continuously in the x-direction and updating the sintering pattern synchronously, as well as by overlapping the splicing of adjacent sintering areas in the y-direction. A low-cost composite powder suitable for the ISLS system was prepared using polyether sulfone (PES), pinewood and carbon black (CB) powders as raw materials. Large-sized samples were fabricated using composite powder, and the microstructure, dimensional accuracy, geometric deviation, density, mechanical properties and feasible feature sizes were evaluated.

Findings

The experimental results demonstrate that the ISLS system is feasible and can print large-sized parts with good dimensional accuracy, acceptable geometric deviations, specific small-scale features and certain density and mechanical properties.

Originality/value

This study has achieved the transition from traditional point sintering mode to image-shaped surface sintering mode. It has provided a new approach to enhance the system performance of traditional SLS.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 579