Search results

1 – 10 of over 2000
Expert briefing
Publication date: 29 April 2024

Although raising fuel efficiency standards as a means of reducing emissions has been a high-profile issue for the government, last-minute concessions to the automotive sector will…

Details

DOI: 10.1108/OXAN-DB286708

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 27 August 2024

Omid Mansourihanis, Mohammad Javad Maghsoodi Tilaki, Tahereh Kookhaei, Ayda Zaroujtaghi, Shiva Sheikhfarshi and Nastaran Abdoli

This study explores the spatial and temporal relationship between tourism activities and transportation-related carbon dioxide (CO2) emissions in the United States (US) from 2003…

Abstract

Purpose

This study explores the spatial and temporal relationship between tourism activities and transportation-related carbon dioxide (CO2) emissions in the United States (US) from 2003 to 2022 using advanced geospatial modeling techniques.

Design/methodology/approach

The research integrated geographic information systems (GIS) to map tourist attractions against high-resolution annual emissions data. The analysis covered 3,108 US counties, focusing on county-level attraction densities and annual on-road CO2 emission patterns. Advanced spatial analysis techniques, including bivariate mapping and local bivariate relationship testing, were employed to assess potential correlations.

Findings

The findings reveal limited evidence of significant associations between tourism activities and transportation-based CO2 emissions around major urban centers, with decreases observed in Eastern states and the Midwest, particularly in non-coastal areas, from 2003 to 2022. Most counties (86.03%) show no statistically significant relationship between changes in tourism density and on-road CO2 emissions. However, 1.90% of counties show a positive linear relationship, 2.64% a negative linear relationship, 0.29% a concave relationship, 1.61% a convex relationship and 7.63% a complex, undefined relationship. Despite this, the 110% national growth in tourism output and resource consumption from 2003–2022 raises potential sustainability concerns.

Practical implications

To tackle sustainability issues in tourism, policymakers and stakeholders can integrate emissions accounting, climate modeling and sustainability governance. Effective interventions are vital for balancing tourism demands with climate resilience efforts promoting social equity and environmental justice.

Originality/value

This study’s innovative application of geospatial modeling and comprehensive spatial analysis provides new insights into the complex relationship between tourism activities and CO2 emissions. The research highlights the challenges in isolating tourism’s specific impacts on emissions and underscores the need for more granular geographic assessments or comprehensive emission inventories to fully understand tourism’s environmental footprint.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 11 May 2023

Farbod Zahedi, Hamidreza Kia and Mohammad Khalilzadeh

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized…

Abstract

Purpose

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized the importance of green logistic system design in decreasing environmental pollution and achieving sustainable development.

Design/methodology/approach

In this paper, a bi-objective mathematical model is developed for the capacitated electric VRP with time windows and partial recharge. The first objective deals with minimizing the route to reduce the costs related to vehicles, while the second objective minimizes the delay of arrival vehicles to depots based on the soft time window. A hybrid metaheuristic algorithm including non-dominated sorting genetic algorithm (NSGA-II) and teaching-learning-based optimization (TLBO), called NSGA-II-TLBO, is proposed for solving this problem. The Taguchi method is used to adjust the parameters of algorithms. Several numerical instances in different sizes are solved and the performance of the proposed algorithm is compared to NSGA-II and multi-objective simulated annealing (MOSA) as two well-known algorithms based on the five indexes including time, mean ideal distance (MID), diversity, spacing and the Rate of Achievement to two objectives Simultaneously (RAS).

Findings

The results demonstrate that the hybrid algorithm outperforms terms of spacing and RAS indexes with p-value <0.04. However, MOSA and NSGA-II algorithms have better performance in terms of central processing unit (CPU) time index. In addition, there is no meaningful difference between the algorithms in terms of MID and diversity indexes. Finally, the impacts of changing the parameters of the model on the results are investigated by performing sensitivity analysis.

Originality/value

In this research, an environment-friendly transportation system is addressed by presenting a bi-objective mathematical model for the routing problem of an electric capacitated vehicle considering the time windows with the possibility of recharging.

Article
Publication date: 15 April 2024

Anam Ul Haq Ganie and Masroor Ahmad

The purpose of this study is to assess the influence of institutional quality (IQ), fossil fuel efficiency, structural change and renewable energy (RE) consumption on carbon…

Abstract

Purpose

The purpose of this study is to assess the influence of institutional quality (IQ), fossil fuel efficiency, structural change and renewable energy (RE) consumption on carbon efficiency.

Design/methodology/approach

This research uses an econometric approach, more specifically the Autoregressive Distributed Lag model, to examine the relationship between structural change, RE consumption, IQ, fossil fuel efficiency and carbon efficiency in India from 1996 to 2019.

Findings

This study finds the positive contributions of variables like fossil fuel efficiency, technological advancement, structural transformation, IQ and increased RE consumption in fostering environmental development through enhanced carbon efficiency. Conversely, this study emphasises the negative contribution of trade openness on carbon efficiency. These findings provide concise insights into the dynamics of factors impacting carbon efficiency in India.

Research limitations/implications

This study's exclusive focus on India limits the generalizability of findings. Future studies should include a broader range of variables impacting various nations' carbon efficiency. Furthermore, it is worth noting that this study examines renewable and fossil fuel efficiency aggregated. Future research endeavours could yield more specific policy insights by conducting analyses at a disaggregated level, considering individual energy sources such as wind, solar, coal and oil. Understanding how the efficiency of each energy source influences carbon efficiency could lead to more targeted and practical policy recommendations.

Originality/value

To the best of the authors’ knowledge, this study addresses a significant gap in the existing literature by being the first empirical investigation into the effects of IQ, fossil fuel efficiency, structural change and RE consumption on carbon efficiency. Unlike prior research, the authors consider a comprehensive IQ index, providing a more holistic perspective. The use of a comprehensive composite index for IQ, coupled with the focus on fossil fuel efficiency and structural change, distinguishes this study from previous research, contributing valuable insights into the intricate dynamics shaping India's path towards enhanced carbon efficiency, an area relatively underexplored in the existing literature.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 23 May 2023

Taraprasad Mohapatra and Sudhansu Sekhar Mishra

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel…

Abstract

Purpose

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel engine. In this study, three types of test fuels are taken and tested in a variable compression ratio diesel engine (compression ignition). The fuels used are conventional diesel fuel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3). The effect of bioethanol and nano-particles on performance, emission and cost-effectiveness is investigated at different load and compression ratios (CRs). The optimum performance and lower emission of the engine are evaluated and compared with other optimization methods.

Design/methodology/approach

The test engine is run by diesel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3) in three different loadings (4 kg, 8 kg and 12 kg) and CR of 14, 16 and 18, respectively. The optimum value of energy efficiency, exergy efficiency, NOX emission and relative cost variation are determined against the input parameters using Taguchi-Grey method and confirmed by response surface methodology (RSM) technique.

Findings

Using Taguchi-Grey method, the maximum energy and exergy efficiency, minimum % relative cost variation and NOX emission are 24.64%, 59.52%, 0 and 184 ppm, respectively, at 4 kg load, 18 CR and fuel type of nano-fuel. Using RSM technique, maximum energy and exergy efficiency are 24.8% and 62.9%, and minimum NOX emission and % cost variation are 208.4 ppm and –6.5, respectively, at 5.2 kg load, 18 CR and nano-fuel. The RSM is suggested as the most appropriate technique for obtaining maximum energy and exergy efficiency, and minimum % relative cost; however, for lowest possible NOX emission, the Taguchi-Grey method is the most appropriate.

Originality/value

Waste rice straw is used to produce bioethanol. 4-E analysis, i.e. energy, exergy, emission and economic analysis, has been carried out, optimized and compared.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 July 2024

Wei Jiang, Hun Guo, Danye Zhu and Ray C. Chang

This study aims to enhance the fuel efficiency of jet transport aircraft based on mathematical models and flight crew operating manual (FCOM) for the purpose to assist the civil…

Abstract

Purpose

This study aims to enhance the fuel efficiency of jet transport aircraft based on mathematical models and flight crew operating manual (FCOM) for the purpose to assist the civil aviation industry in improving flight safety and operational efficiency.

Design/methodology/approach

The research applies flight data mining and fuzzy logic modeling technologies to set up lift-to-drag ratio (L/D) models and nine models of thrust, Mach number, engine pressure ratio and fuel flow rate to estimate the deviation of each flight parameter. All performance deviations are calculated based on the values of flight data recorded in the quick access recorder and FCOM at the observed flight conditions. The L/D model can obtain the influence of each flight parameter and estimate the insufficient amount of each parameter by averaging it with the least square method. In the estimation of optimal altitude, nine models are built based on data from FCOM to estimate the optimal altitude and complete comparative analysis of the airspeed, Mach number and fuel flow rate at the optimal altitude.

Findings

Analyze 11 relevant parameters from the sensitivity derivative of L/D model to obtain how each parameter affected fuel consumption and explore the causes of additional fuel consumption. Complete the estimation of the optimal cruise altitude of the aircraft, and calculate the comparative analysis of the altitude, speed, Mach number and other parameters with the sensitivity derivative of the L/D. The estimation of the optimal cruise altitude of the aircraft can meet the analysis of the sensitivity derivative.

Research limitations/implications

This study is to enhance the fuel efficiency of jet commercial transport based on mathematical model and FCOM. FCOM is required to conduct this study. The estimation of the optimal cruise altitude through the nine models of the aircraft could meet the analysis of the sensitivity derivative.

Practical implications

The object of present research is to demonstrate the effectiveness of optimization of flight conditions through model analysis to get knowledge of the effects of each influencing flight variable to L/D for future flight operations’ reference.

Social implications

The model-based derivative analysis had the ability to perform derivative prediction analysis on any input parameters, more flight parameters could be optimized in future research to help airlines improve flight safety and operational efficiency.

Originality/value

The present enhancement method of fuel efficiency is an innovation to examine the abnormal aircraft performance and its flight operations, thereby to explore the causes of additional fuel consumption. The present method can become an auxiliary tool for flight operations quality assurance to improve fuel efficiency for the airlines.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 19 December 2023

Tamara Apostolou, Ioannis N. Lagoudis and Ioannis N. Theotokas

This paper aims to identify the interplay of standard Capesize optimal speeds for time charter equivalent (TCE) maximization in the Australia–China iron ore route and the optimal…

Abstract

Purpose

This paper aims to identify the interplay of standard Capesize optimal speeds for time charter equivalent (TCE) maximization in the Australia–China iron ore route and the optimal speeds as an operational tool for compliance with the International Maritime Organization (IMO) carbon intensity indicator (CII).

Design/methodology/approach

The TCE at different speeds have been calculated for four standard Capesize specifications: (1) standard Capesize with ecoelectronic engine; (2) standard Capesize with non-eco engine (3) standard Capesize vessel with an eco-electronic engine fitted with scrubber and (4) standard Capesize with non-eco engine and no scrubber fitted.

Findings

Calculations imply that in a highly inflationary bunker price context, the dollar per ton freight rates equilibrates at levels that may push optimal speeds below the speeds required for minimum CII compliance (C Rating) in the Australia–China trade. The highest deviation of optimal speeds from those required for minimum CII compliance is observed for non-eco standard Capesize vessels without scrubbers. Increased non-eco Capesize deployment would see optimal speeds structurally lower at levels that could offer CII ratings improvements.

Originality/value

While most of the studies have covered the use of speed as a tool to improve efficiency and emissions in the maritime sector, few have been identified in the literature to have examined the interplay between the commercial and operational performance in the dry bulk sector stemming from the freight market equilibrium. The originality of this paper lies in examining the above relation and the resulting optimal speed selection in the Capesize sector against mandatory environmental targets.

Details

Maritime Business Review, vol. 9 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Article
Publication date: 7 May 2024

Swapnil Soni and Bala Subrahmanya Mungila Hillemane

In the process of industrial growth, when existing industries go for technology upgradation and new modernised industries emerge, both capital intensity and energy demand of…

Abstract

Purpose

In the process of industrial growth, when existing industries go for technology upgradation and new modernised industries emerge, both capital intensity and energy demand of overall industry tend to rise steadily. This poses a serious challenge for sustainable development objectives. Towards this end, enhancing energy efficiency of individual industries is the only remedy. Against this backdrop, the study aims to probe the trends in capital intensities and energy efficiencies of individual industries in India.

Design/methodology/approach

This study uses panel data regression analysis on data of two-digit industries from 1980/1981–2016/2017. The statistical analysis includes relevant macroeconomic variables derived from the literature to ascertain the drivers of energy efficiency in industries.

Findings

The results brought out that capital deepening due to technology upgradation and modernisation and capital productivity growth are the decisive determinants of energy efficiency growth. Furthermore, the ever-increasing fuel price motivated industries to conserve energy on a steady basis, supplemented by energy conservation-specific policy interventions.

Research limitations/implications

This study recommends policy initiatives to ascertain and address technology gaps industry-wise, so that its subsequent efficient capital utilisation, and energy conservation measures of industries would result in energy efficiency growth in industry. The policy must focus on energy-efficient capital intensification in fabricated metals, leather, textile and wood industries that are found less-energy-efficient despite being less-capital-intensive.

Originality/value

This study empirically explores the capital efficiency of industries by investigating the interaction between capital intensity and energy efficiency at a two-digit industry level. It explores the determinants of energy efficiency and proposes industry-specific policies for energy-efficiency-enhancement of the overall industry.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Purpose

The aim of this study was to evaluate the performance of fuel flow processes in a network of eight gas stations, located in the mesoregion of Alto Paranaíba and Triângulo Mineiro.

Design/methodology/approach

Two multi-criteria decision support methods were applied, respectively, of a statistical and mathematical nature, namely, Principal Component Analysis (PCA) and Data Envelopment Analysis (DEA). The research method used was quantitative, with a brief complement of qualitative research, and descriptive in purpose, supported by the inductive method. The data collection stage took place with the support of interviews, with the application of a structured questionnaire, and non-probabilistic sampling, for convenience.

Findings

It was possible to verify that the gas station that stood out the most was station 2 (GS2), which achieved maximum efficiency, a fact that can be justified by the analysis resulting from the application of PCA, as for the product purchase variable (PP), the GS2 is the one that buys the most fuel, and is also the one with the largest storage capacity (C), and the highest volume of product sales (PS), which suggests signs of balance between supply and demand for this station, justifying its prominence.

Research limitations/implications

The limitations of the study were related to the DEA technique, which requires a number of variables/indicators three times smaller than the number of DMUs considered, and the difficulty in obtaining financial data on the DMUs analyzed. Considering the security and anonymity of the gas station network, it was not possible to use this data.

Practical implications

The performance assessment of fuel flow processes carried out in this study promotes the efficient use of available resources as well as identifying efficient DMUs that represent benchmarks for improving management processes and performance of inefficient DMUs.

Social implications

From a social perspective, this study promotes the improvement of the quality of flow processes and effective management of the fuel supply chain, ensuring the safe storage and transportation of fuels to customer supply. Performance management in this sector moves other sectors of the economy, since an efficient unit represents a balance between supply and demand, and consequently, boosts the regional economy, promoting economic growth of the population. Hiring qualified labor for this purpose also represents one of the implications of the study. From an environmental perspective, optimizing flow processes generates a reduction in greenhouse gas emissions and encourages the formulation of public policies aimed at consolidating sustainable practices.

Originality/value

Performance management applied to the context of the fuel supply chain is a relevant topic that has been little explored in scientific research, with a low level of information detail. This study using the inductive method allows the generalization and replication of this management pattern in other organizations in the sector in order to increase the efficiency of the fuel distribution system, with the perspective of maximizing outputs and reducing input consumption. In this aspect, the study introduces possibilities for advancement in social and environmental perspectives based on the effective management of fuel logistics.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

1 – 10 of over 2000