Search results

1 – 10 of 576
Book part
Publication date: 12 September 2024

Ritujaa Khanolkar, Pradeep Choudhary and Dr Sonal Gupta

The ongoing adverse effects of climate change have led scientific think tanks to aim towards achieving net-zero greenhouse gas (GHG) emissions targets with affordable and clean…

Abstract

The ongoing adverse effects of climate change have led scientific think tanks to aim towards achieving net-zero greenhouse gas (GHG) emissions targets with affordable and clean energy (Sustainable Development Goal 7). One of the significant contributors to the escalating emissions rate is the use of conventional vehicles. The uptake of electric vehicles (EVs) is a promising solution for a cleaner economy. However, increased penetration poses various challenges to the power system. There is a need to explore alternatives, such as hydrogen fuel cell vehicles (HFCVs), to use the advantages of both electric and conventional vehicles and bridge the gap between them. However, the transition to hydrogen-based transport requires intensive study of its key benefits and issues, the actions that need to be taken to achieve a changeover concerning light and heavy vehicles and whether such kind of transformation is likely or even possible. This chapter highlights the brief history and mechanics of HFCVs. It further analyses the various benefits and challenges which the technology poses. Additionally, it addresses critical questions regarding the feasibility of the shift towards hydrogen fuel to satisfy the world's rapidly growing energy needs and meet net-zero targets based on real-life applications. This chapter will be a valuable resource for further research, development and education efforts in HCFVs to assist in the rapidly growing transportation needs for automobiles and other vehicles.

Article
Publication date: 14 June 2023

Manikandamaharaj T.S. and Jaffar Ali B.M.

Effective performance of a direct ethanol fuel cell (FC) stack depends on the satisfactory operation of its individual cells where it is always challenging to manage the…

Abstract

Purpose

Effective performance of a direct ethanol fuel cell (FC) stack depends on the satisfactory operation of its individual cells where it is always challenging to manage the temperature gradient, water flow and distribution of reactants. In that, the design of the bipolar fuel flow path plate plays a vital role in achieving the aforementioned parameters. Further, the bipolar plates contribute 80% of the weight and 30%–40% of its total cost. Aim of this study is to enhance the efficiency of fuel to energy conversion and to minimize the overall cost of production.

Design/methodology/approach

The authors have specifically designed, simulated and fabricated a standard 2.5 × 2.5 cm2 active area proton exchange membrane (PEM) FC flow path plate to study the performance by varying the flow fields in a single ladder, double ladder and interdigitated and varying channel geometries, namely, half curve, triangle and rectangle.

Findings

Using the 3D PEMFC model and visualizing the physical and electrochemical processes occurring during the operation of the FCs resulted in a better-performing flow path plate design. It is fabricated by using additive manufacturing technology. In addition, the assembly of the full cell with the designed flow path plate shows about an 11.44% reduction in total weight, which has a significant bearing on its total cost as well as specific energy density in the stack cell.

Originality/value

Simultaneous optimization of multiple flow path parameters being carried out for better performance is the hallmark of this study which resulted in enhanced energy density and reduced cost of device production.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2024

Grzegorz Leszczyński and Sofía De-León Almaraz

While some hydrogen (H2) products are available in the industrial market, new clean H2 applications are considered critical alternatives in decarbonization efforts. As suppliers…

Abstract

Purpose

While some hydrogen (H2) products are available in the industrial market, new clean H2 applications are considered critical alternatives in decarbonization efforts. As suppliers need to understand how business customers conceive the value of hydrogen, this paper aims to investigate how the value of hydrogen is described in the published evidence and to identify or propose specific tools to assess its value.

Design/methodology/approach

An integrative literature review is developed to synthesize studies on the value of hydrogen to identify the main value categories. Then, the authors create a novel guideline by linking three value dimensions: 1) the product-oriented value (including sustainability), 2) the elements of B2B value and 3) the concept of goal-oriented value.

Findings

This paper categorizes the aspects of value discussed so far in the literature, suggesting conceptualizing the value of H2 value-in-use based on economic, environmental, social and technological categories. The missing value categories from the marketing perspective are related to perceived value. A comprehensive guideline for assessing the value of H2 for business customers was developed to address that gap. The guideline can evaluate hydrogen from a multicategory perspective and compare new hydrogen products with alternatives.

Originality/value

First, the authors present the value of hydrogen in the B2B marketing discussion. Second, the authors propose four hydrogen value categories based on the current state-of-the-art. Third, the authors developed the multicategory guideline for assessing the value of hydrogen products for business customers (VH2-BC).

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 4 September 2023

Sara Perotti and Claudia Colicchia

The purpose of this paper is to propose a framework of green strategies as a combination of energy-efficiency measures and solutions towards environmental impact reduction for…

4852

Abstract

Purpose

The purpose of this paper is to propose a framework of green strategies as a combination of energy-efficiency measures and solutions towards environmental impact reduction for improving environmental sustainability at logistics sites. Such measures are examined by discussing the related impacts, motivations and barriers that could influence the measures' adoption. Starting from the framework, directions for future research in this field are outlined.

Design/methodology/approach

The proposed framework was developed starting from a systematic literature review (SLR) approach on 60 papers published from 2008 to 2022 in international peer-reviewed journals or conference proceedings.

Findings

The framework identifies six main areas of intervention (“green strategies”) towards green warehousing, namely Building, Utilities, Lighting, Material Handling and Automation, Materials and Operational Practices. For each strategy, specific energy-efficiency measures and solutions towards environmental impact reduction are further pinpointed. In most cases, “green-gold” measures emerge as the most appealing, entailing environmental and economic benefits at the same time. Finally, for each measure the relationship with the measures' primary impacts is discussed.

Originality/value

From an academic viewpoint, the framework fills a major gap in the scientific literature since, for the first time, this study elaborates the concept of green warehousing as a result of energy-efficiency measures and solutions towards environmental impact reduction. A classification of the main areas of intervention (“green strategies”) is proposed by adopting a holistic approach. From a managerial perspective, the paper addresses a compelling need of practitioners – e.g. logistics service providers (LSPs), manufacturers and retailers – for practices and solutions towards greener warehousing processes to increase energy efficiency and decrease the environmental impact of the practitioners' logistics facilities. In this sense, the proposed framework can provide valuable support for logistics managers that are about to approach the challenge of turning the managers' warehouses into greener nodes of the managers' supply chains.

Details

The International Journal of Logistics Management, vol. 34 no. 7
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 11 March 2024

Mayuri Gogoi and Farah Hussain

This study aims to identify the various economic and non-economic determinants of renewable energy consumption (REC) in Brazil, Russia, India, China and South Africa (BRICS). Due…

Abstract

Purpose

This study aims to identify the various economic and non-economic determinants of renewable energy consumption (REC) in Brazil, Russia, India, China and South Africa (BRICS). Due to the adverse effect of carbon emission on the environment, every country is trying for a transition from fossil fuel towards renewable energy. Renewable energy plays a crucial role in reducing carbon emission and combating climate change. Understanding the determinants that influence REC helps to promote this transition.

Design/methodology/approach

The study is based on an unbalanced panel data over the period 2002–2019 for all five BRICS nations. The panel corrected standard error (PCSE) method has been adopted to examine the determinants of REC.

Findings

Industrialization, population growth and foreign direct investment (FDI) are found to be significant economic determinants of REC while patent on environmental technologies, political instability and industrial design are significant non-economic determinants of REC in the BRICS nations.

Research limitations/implications

The findings imply that to increase REC in BRICS nations, policymakers should incentivize industries for investments in renewable energy, attract FDI aligned with environmental regulations, raise population awareness through training, enforce industrial design standards, establish fair technology transfer frameworks to overcome patent barriers and create stable, long-term renewable energy policies with risk mitigation instruments to address political instability.

Originality/value

The study captures the effect of patents on environmental technologies and industrial design on the consumption of renewable energy. Thus, the novelty lies in investigating unexplored variables in the previous literature likely to affect REC.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 12 April 2023

Guoyu Zhang, Honghua Wang, Tianhang Lu, Chengliang Wang and Yaopeng Huang

Parameter identification of photovoltaic (PV) modules plays a vital role in modeling PV systems. This study aims to propose a novel hybrid approach to identify the seven…

51

Abstract

Purpose

Parameter identification of photovoltaic (PV) modules plays a vital role in modeling PV systems. This study aims to propose a novel hybrid approach to identify the seven parameters of the two-diode model of PV modules with high accuracy.

Design/methodology/approach

The proposed hybrid approach combines an improved particle swarm optimization (IPSO) algorithm with an analytical approach. Three parameters are optimized using IPSO, whereas the other four are analytically determined. To improve the performance of IPSO, three improvements are adopted, that is, evaluating the particles with two evaluation functions, adaptive evolutionary learning and adaptive mutation.

Findings

The performance of proposed approach is first verified by comparing with several well-established algorithms for two case studies. Then, the proposed method is applied to extract the seven parameters of CSUN340-72M under different operating conditions. The comprehensively experimental results and comparison with other methods verify the effectiveness and precision of the proposed method. Furthermore, the performance of IPSO is evaluated against that of several popular intelligent algorithms. The results indicate that IPSO obtains the best performance in terms of the accuracy and robustness.

Originality/value

An improved hybrid approach for parameter identification of the two-diode model of PV modules is proposed. The proposed approach considers the recombination saturation current of the p–n junction in the depletion region and makes no assumptions or ignores certain parameters, which results in higher precision. The proposed method can be applied to the modeling and simulation for research and development of PV systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2023

Nasser Baharlou-Houreh, Navid Masaeli, Ebrahim Afshari and Kazem Mohammadzadeh

This paper aims to investigate the effect of partially blocking the cathode channel with the stair arrangement of obstacles on the performance of a proton exchange membrane fuel…

Abstract

Purpose

This paper aims to investigate the effect of partially blocking the cathode channel with the stair arrangement of obstacles on the performance of a proton exchange membrane fuel cell.

Design/methodology/approach

A numerical study is conducted by developing a three-dimensional computational fluid dynamics model.

Findings

As the angle of the stair arrangement increases, the performance of the fuel cell is reduced and the pressure drop is decreased. The use of four stair obstacles with an angle of 0.17° leads to higher power density and a lower pressure drop compared to the case with three rectangular obstacles of the same size and maximum height. The use of four stair obstacles with an angle of 0.34° results in higher power density and lower pressure drop compared to the case with two rectangular obstacles of the same size and maximum height.

Originality/value

Using the stair arrangement of obstacles as an innovation of the present work, in addition to improving the fuel cell’s performance, creates a lower pressure drop than the simple arrangement of obstacles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 September 2022

Raghavaiah N.V. and Naga Srinivasulu G.

The purpose of this paper is to investigate the performance of Passive Direct Methanol Fuel Cell (PDMFC) experimentally using various Membrane Electrode Assembly (MEA) shapes such…

Abstract

Purpose

The purpose of this paper is to investigate the performance of Passive Direct Methanol Fuel Cell (PDMFC) experimentally using various Membrane Electrode Assembly (MEA) shapes such as square, rectangle, rhombus, and circle with equal areas and equal perimeters. The variation in MEA shape/size is achieved by altering gasket openings in the dynamic regions.

Design/methodology/approach

In the equal areas of MEA shapes, gasket opening areas of 1963.5 (+/−0.2) mm2 are used. Whereas in the equal perimeters of shapes, gasket opening perimeters of 157.1 (+/−0.2) mm are used. In this experimentation, Nickel-201 current collectors with 45.3% of circular openings are used on both the anode and cathode sides. The experiment is carried out at a 5 molar methanol concentration to find out the highest power density of the cell.

Findings

In the equal areas, among the shapes that are chosen for investigation, the square shape opening consisting of a perimeter of 177.2 mm has developed a maximum power density of 6.344 mWcm−2 and a maximum current density of 65.2 mAcm−2. Similarly, in equal perimeters, the rhombus shape opening with an area of 1400 mm2 has developed a maximum power density of 7.714 mWcm−2 and a maximum current density of 85.3 mAcm−2.

Originality/value

The novelty of this research work is instead of fabricating various shapes and sizes of highly expensive MEAs, the desired shapes and sizes of the MEA are achieved by altering gasket openings over dynamic regions to find out the highest power density of the cell.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 576