Search results

1 – 10 of over 28000
Article
Publication date: 17 April 2020

Chuanbo Zheng, Jiayan Huang and Gua Yi

This paper aims to study the effect of current density of hydrogen charging on the semiconductor properties and pitting initiation of 2205 duplex stainless steel (DSS) passivation…

Abstract

Purpose

This paper aims to study the effect of current density of hydrogen charging on the semiconductor properties and pitting initiation of 2205 duplex stainless steel (DSS) passivation film.

Design/methodology/approach

In this work, the 2205 DSS is pre-hydrogenated and passivated. Then, the passivation film is tested by electrochemical impedance method, Mott–Schottky curve method and dynamic potential scanning method. The influences of hydrogen on the properties of the passivation film and the corrosion behavior of the matrix were studied by analyzing the curves obtained in the electrochemical test. The surface of the passivation film after pre-hydrogenation and anodic polarization was observed by using the ultra-depth three-dimensional microscopy and the scanning electron microscope. The integrity, density and corrosion morphology of the passivation film were studied and discussed.

Findings

With the increase of the hydrogen current density, the growth of the passivation film is hindered, the concentrations of donor and acceptor in the film are increased, the conductivity of the passivation film increases. In the anodic polarization, the dimensional passive current density increases with the increase of the hydrogen current density, and the pitting potential is reversed, the more likely the sample is pitting. In general, hydrogen hinders the formation of the passive film on duplex stainless steel, which increases the concentration of point defects in the passive film. Finally, the passive film is easy to crack and pitting.

Originality/value

The performance of passive film is an important condition to influence the corrosion behavior of stainless steel. However, little research has been done on the effects of hydrogen on the electrochemistry and pitting sensitivity of 2205 DSS passivation films. The effect of hydrogen on semiconductor properties and pitting initiation of 2205 DSS passivation film is needed to be investigated.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

Yanbao Guo, Hai Tan, Deguo Wang and Tao Meng

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current

Abstract

Purpose

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current (AC) corrosion of buried steel pipelines is becoming more serious. This paper aims to study the corrosion behaviours of Q235 buried steel pipelines induced by the alternating stray current, with a set of indoor simulated experiment apparatuses.

Design/methodology/approach

The corrosion of the coating holidays of the buried steel pipelines at various AC current densities from 0 to 200 A/m2 in the soil-simulating environment was revealed by the electrochemical and weight-loss methods.

Findings

The results showed that the corrosion potential of the steel shifted negatively obviously and the corrosion rate of the steel increased with the increasing of AC current density. At a low AC current density, the negative deviation of the corrosion potential of the steel was small and the increase of corrosion rate was slight. However, the negative deviation of the corrosion potential was remarkable and the corrosion rate was greatly increased at a relative higher AC current density. The geometrical shape of the corrosion images indicated the corrosion forms changed from uniform corrosion to local corrosion due to the increase of AC interference.

Originality/value

Investigation results are of benefit to provide a new strategy to forecast and evaluate the AC-induced corrosion of the buried pipelines which could improve the safety of pipeline transportation.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 August 2007

Stéphane Duchesne, Ewa Napieralska‐Juszczak and Daniel Roger

A new model able to describe the high frequency (HF) behaviour of the laminated cores of AC machines is proposed. The aim is to compute the external flux density of machine cores…

Abstract

Purpose

A new model able to describe the high frequency (HF) behaviour of the laminated cores of AC machines is proposed. The aim is to compute the external flux density of machine cores, corresponding to electromagnetic emissions in the HF range when the skin effect is predominant.

Design/methodology/approach

For high frequencies, the skin depth is much lower than the thickness of a lamination and the external flux density is determined using a new analytical model. The validity of this model is confirmed by measurements performed on a magnetic core representing a small part of a large machine and a finite element 3D simulation.

Findings

For high frequencies, the external flux density is computed considering an equivalent current layer flowing on the laminated core external surface. Eddy currents in the laminated core have a large influence on the current density in this current layer.

Research limitations/implications

The new model proposed is valid when the skin depth is lower than half the thickness of a lamination.

Practical implications

The knowledge of the machine magnetic core behaviour in the frame of the HF electromagnetic emissions has practical applications for large AC machine maintenance such as the localization of partial discharges in the winding insulation. With this model, it is possible to analyse the information given by small magnetic sensors placed between the machine core and the external frame to solve all the insulation problems.

Originality/value

The new proposed model is able to establish a link between the electric HF phenomena in the windings of a working machine and the magnetic flux density outside the laminated core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2022

Yue Dai, Qing Wang, Yongbin Zhang, Guangmin Liu, Lin Zhang and Feng Wang

The purpose of this paper is to explore the optimum average current density and pulse width for electrodeposition of gold in citrate electrolyte, and it is verified that the…

Abstract

Purpose

The purpose of this paper is to explore the optimum average current density and pulse width for electrodeposition of gold in citrate electrolyte, and it is verified that the uniformity of film thickness can be effectively improved by periodic pulse reverse electroplating.

Design/methodology/approach

Apply forward pulse current, forward group pulse current and periodic pulse reverse current to the electrolyte and compare the film quality. High-frequency group pulses are used in both forward and reverse directions of the periodic pulse reverse current.

Findings

It is verified by experiments that periodic pulse reverse plating is superior to forward pulse plating and forward group pulse plating in terms of particle size, compactness, impurity content and thickness uniformity of the film. Add low-frequency vibration to the cathode under the same pulse electrical parameters as a comparative experiment to prove the beneficial effect of vibration on the allowable limiting current density and plating rate.

Originality/value

Gold film is often used as the sealing layer of precision parts. Increasing the thickness uniformity and improving the compactness of gold film will help to reduce the size error, improve the subsequent assembly accuracy and increase the service life of wear-resistant layer. Citrate gold plating electrolyte combines the advantages of cyanide electrolyte and cyanide-free electrolyte. Hence, this research focuses on the characteristics of periodic pulse reverse plating in terms of particle size, compactness, impurity content and thickness uniformity of the film and compare it with forward pulse plating and forward group pulse plating.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 October 2021

Yanruoyue Li, Guicui Fu, Bo Wan, Zhaoxi Wu, Xiaojun Yan and Weifang Zhang

The purpose of this study is to investigate the effect of electrical and thermal stresses on the void formation of the Sn3.0Ag0.5Cu (SAC305) lead-free ball grid array (BGA) solder…

170

Abstract

Purpose

The purpose of this study is to investigate the effect of electrical and thermal stresses on the void formation of the Sn3.0Ag0.5Cu (SAC305) lead-free ball grid array (BGA) solder joints and to propose a modified mean-time-to-failure (MTTF) equation when joints are subjected to coupling stress.

Design/methodology/approach

The samples of the BGA package were subjected to a migration test at different currents and temperatures. Voltage variation was recorded for analysis. Scanning electron microscope and electron back-scattered diffraction were applied to achieve the micromorphological observations. Additionally, the experimental and simulation results were combined to fit the modified model parameters.

Findings

Voids appeared at the corner of the cathode. The resistance of the daisy chain increased. Two stages of resistance variation were confirmed. The crystal lattice orientation rotated and became consistent and ordered. Electrical and thermal stresses had an impact on the void formation. As the current density and temperature increased, the void increased. The lifetime of the solder joint decreased as the electrical and thermal stresses increased. A modified MTTF model was proposed and its parameters were confirmed by theoretical derivation and test data fitting.

Originality/value

This study focuses on the effects of coupling stress on the void formation of the SAC305 BGA solder joint. The microstructure and macroscopic performance were studied to identify the effects of different stresses with the use of a variety of analytical methods. The modified MTTF model was constructed for application to SAC305 BGA solder joints. It was found suitable for larger current densities and larger influences of Joule heating and for the welding ball structure with current crowding.

Details

Soldering & Surface Mount Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 April 1980

R. Radeka, D. Zorovic and D. Barisin

This work is a continuation of our former investigations in the field of corrosion of steel by alternating currents. In‐vestigations of corrosion of construction ship steels by…

Abstract

This work is a continuation of our former investigations in the field of corrosion of steel by alternating currents. In‐vestigations of corrosion of construction ship steels by alternating currents in seawater have been made. Investigations were performed within the range of alternating current densities from 20 up to 1500 mA/dm2 at frequencies from 18 up to 20000 Hz. Investigations have shown that the corrosion rate increases with the increase of current density at constant frequency. Besides, it has been established that at constant current density the corrosion rate decreases with the frequency increase up to 2000 Hz, and with the further increase of frequency up to 20000 Hz the rate of corrosion is increased. The material effect of corrosion by alternating currents in our investigations amount to 4.35–17.57% of the corrosion by equivalent densities of direct current.

Details

Anti-Corrosion Methods and Materials, vol. 27 no. 4
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 15 January 2019

Jun Wang, Zili Li, Gan Cui, JianGuo Liu, Chuanping Kong, Long Wang, Ge Gao and Jian Guo

The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.

Abstract

Purpose

The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.

Design/methodology/approach

The Tafel polarization curves of X70 steel under DC interference were tested using electrochemical method, the corrosion rate was calculated using weight-loss method and the change in steel surface was analyzed by optical microscopy.

Findings

The results showed that E-I polarization curves under 200-1,200 A/m2 interference were linear; with an increase in the DC density, the corrosion potential of X70 steel shifted positively, solution pH after the weight-loss tests increased and corrosion rate increased linearly. A mathematical relationship between polarization resistance Rp and current density was established. Corrosion morphology indicated that pitting corrosion and crevice corrosion occurred on the X70 steel under DC interference in simulated soil solution.

Originality/value

All tests were conducted at a relative higher DC density (200-1,200 A/m2). The linear fitting method is proposed to fit data of Tafel polarization curves under DC interference. This study provides guidelines for safe operation of X70 steel pipelines.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 September 2008

F. Arpino, A. Carotenuto, N. Massarotti and P. Nithiarasu

The purpose of this paper is to introduce a robust mathematical model and finite element‐based numerical approach to solve solid oxide fuel cell (SOFC) problems.

Abstract

Purpose

The purpose of this paper is to introduce a robust mathematical model and finite element‐based numerical approach to solve solid oxide fuel cell (SOFC) problems.

Design/methodology/approach

A robust mathematical model is constructed by studying pros and cons of different SOFC and other fuel cell models. The finite element‐based numerical approach presented is a unified approach to solve multi‐disciplinary aspects arising from SOFC problems. The characteristic‐based split approach employed here is an efficient way of solving various flow, heat and mass transfer regimes in SOFCs.

Findings

The results presented show that both the model and numerical algorithm proposed are robust. Furthermore, the approaches proposed are general and can be easily extended to other similar problems of practical interest.

Originality/value

The model proposed is the first of this kind and the unified approach for solving flow, heat and mass transfer within a fuel cell is also novel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2010

F. Dughiero, M. Forzan and E. Sieni

The purpose of this paper is to describe how numerical models of human body have been applied for the evaluation of current density induced by strong magnetic field, to verify the…

Abstract

Purpose

The purpose of this paper is to describe how numerical models of human body have been applied for the evaluation of current density induced by strong magnetic field, to verify the respect of the basic restriction proposed by International Committee Non Ionizing Radiation Protection (ICNIRP) guidelines.

Design/methodology/approach

Finite element method has been used in order to compute the induced current density in a suitable human body model and a simplified model – a homogeneous cylinder – due to a time‐varying magnetic field.

Findings

In the practical case of a resistance welding equipment, the implemented computational technique has been used in order to evaluate both the magnetic flux density and the induced current density in different tissues. Their values have been also compared with the ones obtained in a homogeneous cylinder.

Practical implications

The proposed method can be used in order to evaluate the compliance of the magnetic field produced by resistance welding equipments with ICNIRP limits.

Originality/value

A realistic model of human body has been used. In the paper, the difference on magnetic flux density and corresponding current density values is pointed out for various source positions using a heterogeneous tetrahedral human body model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 January 2020

Ashutosh Sharma and Byungmin Ahn

The purpose of this paper is to investigate the influence of pulse plating current density on the morphology and solderability of Pb-free Sn-Cu solder coatings prepared from…

Abstract

Purpose

The purpose of this paper is to investigate the influence of pulse plating current density on the morphology and solderability of Pb-free Sn-Cu solder coatings prepared from alkaline stannate baths.

Design/methodology/approach

Sn-Cu solder coatings were produced from a plating solution containing sodium stannate, copper stannate, sodium hydroxide and sorbitol additive on copper substrates. The pulse plating experiments were conducted in galvanostatic mode. The plating current density was varied from 5 to 25 mA/cm2, and the morphology of the coatings was studied. The solderability of the coatings was assessed by spread ratio measurement after reflowing the solder coatings at 250°C.

Findings

The composition control of eutectic solders is always a challenge in plating. The findings show that Sn-Cu coatings prepared by pulse plating are composed of tetragonal ß-Sn structure and Cu6Sn5 compounds irrespective of bath composition and conditions. The final coatings were very dense and smooth with nodular morphology. It was shown that a eutectic composition can be achieved if we apply a current density of ∼15-20 mA/cm2. The solderability studies suggest that solder coatings plated at and beyond 15 mA/cm2 are more suitable for solder finish applications.

Originality/value

The work presents key issues in pulse electroplating of Sn-Cu solder coatings from an alkaline bath. Possible strategies to control the eutectic Sn-Cu composition by plating process are recommended.

Details

Soldering & Surface Mount Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 28000