Search results

1 – 10 of 119
Content available
Article
Publication date: 1 April 2004

75

Abstract

Details

Microelectronics International, vol. 21 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
154

Abstract

Details

Assembly Automation, vol. 29 no. 3
Type: Research Article
ISSN: 0144-5154

Open Access
Article
Publication date: 14 July 2021

Luca Giorleo and Michele Bonaventi

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

1647

Abstract

Purpose

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

Design/methodology/approach

The research was divided into two activities: simple; and complex-part production capability. In the simple-part step, the performance of gypsum powder and the minimum mold thickness that would withstand the casting process. In the complex-part step, the authors first investigated the powder removability as a function of geometry complexity and then binder jetting performance was evaluated for the case of lattice-structure fabrication.

Findings

All the geometries tested withstand the casting process demonstrating the benefits in terms of complexity part design; however, the process suffers of all the typical defect of casting as misrun, porosity and cold shut.

Originality/value

The results found in this research improve the benefits related to additive manufacturing application in industrial environment and in particular to the binder jetting technology and the rapid casting approach.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 April 2001

138

Abstract

Details

Industrial Robot: An International Journal, vol. 28 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 16 January 2019

Maheshwaran Gopalakrishnan, Anders Skoogh, Antti Salonen and Martin Asp

The purpose of this paper is to increase productivity through smart maintenance planning by including productivity as one of the objectives of the maintenance organization…

5275

Abstract

Purpose

The purpose of this paper is to increase productivity through smart maintenance planning by including productivity as one of the objectives of the maintenance organization. Therefore, the goals of the paper are to investigate existing machine criticality assessment and identify components of the criticality assessment tool to increase productivity.

Design/methodology/approach

An embedded multiple case study research design was adopted in this paper. Six different cases were chosen from six different production sites operated by three multi-national manufacturing companies. Data collection was carried out in the form of interviews, focus groups and archival records. More than one source of data was collected in each of the cases. The cases included different production layouts such as machining, assembly and foundry, which ensured data variety.

Findings

The main finding of the paper is a deeper understanding of how manufacturing companies assess machine criticality and plan maintenance activities. The empirical findings showed that there is a lack of trust regarding existing criticality assessment tools. As a result, necessary changes within the maintenance organizations in order to increase productivity were identified. These are technological advancements, i.e. a dynamic and data-driven approach and organizational changes, i.e. approaching with a systems perspective when performing maintenance prioritization.

Originality/value

Machine criticality assessment studies are rare, especially empirical research. The originality of this paper lies in the empirical research conducted on smart maintenance planning for productivity improvement. In addition, identifying the components for machine criticality assessment is equally important for research and industries to efficient planning of maintenance activities.

Details

International Journal of Productivity and Performance Management, vol. 68 no. 5
Type: Research Article
ISSN: 1741-0401

Keywords

Content available
190

Abstract

Details

Industrial Robot: An International Journal, vol. 30 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 February 2001

181

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Book part
Publication date: 2 October 2023

Federica Sacco and Giovanna Magnani

In recent years, both academics and institutions have acknowledged the crucial role multinational enterprises (MNEs) can play in addressing the sustainability challenges, as…

Abstract

In recent years, both academics and institutions have acknowledged the crucial role multinational enterprises (MNEs) can play in addressing the sustainability challenges, as formalized by the sustainable development goals (SDGs). Nevertheless, because of their extensiveness and their design as country-level targets, SDGs have proven challenging to operationalize at a firm level. This problem opens new and relevant avenues for research in international business (IB). This chapter attempts to frame the topic of extended value chain sustainability in the IB literature. In particular, it addresses a specific topic, that is, how sustainability and resilience-building practices interact in global value chains (GVCs). To do so, the present study develops the case of STMicroelectronics (ST), one of the biggest semiconductor companies worldwide.

Details

Creating a Sustainable Competitive Position: Ethical Challenges for International Firms
Type: Book
ISBN: 978-1-80455-252-0

Keywords

Content available
110

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 119