Search results

1 – 10 of 168
Book part
Publication date: 5 April 2024

Christine Amsler, Robert James, Artem Prokhorov and Peter Schmidt

The traditional predictor of technical inefficiency proposed by Jondrow, Lovell, Materov, and Schmidt (1982) is a conditional expectation. This chapter explores whether, and by…

Abstract

The traditional predictor of technical inefficiency proposed by Jondrow, Lovell, Materov, and Schmidt (1982) is a conditional expectation. This chapter explores whether, and by how much, the predictor can be improved by using auxiliary information in the conditioning set. It considers two types of stochastic frontier models. The first type is a panel data model where composed errors from past and future time periods contain information about contemporaneous technical inefficiency. The second type is when the stochastic frontier model is augmented by input ratio equations in which allocative inefficiency is correlated with technical inefficiency. Compared to the standard kernel-smoothing estimator, a newer estimator based on a local linear random forest helps mitigate the curse of dimensionality when the conditioning set is large. Besides numerous simulations, there is an illustrative empirical example.

Article
Publication date: 11 December 2023

Rajni Kant Rajhans

High economic policy uncertainty forces firms to accumulate a higher level of cash than during normal business periods. However, it is not evident that economic policy uncertainty…

Abstract

Purpose

High economic policy uncertainty forces firms to accumulate a higher level of cash than during normal business periods. However, it is not evident that economic policy uncertainty has a homogeneous impact across cash-holding distributions. This paper aims to study the impact of economic policy uncertainty, leverage and their interaction on cash-holding distributions.

Design/methodology/approach

This study adopted a quantile regression approach to examine the influence of economic policy uncertainty and firm leverage on firm-level cash-holding distributions. To investigate the influence across quantiles, the author estimated 19 quantiles between 0.05 and 0.95.

Findings

This study finds that both economic policy uncertainty and firm leverage significantly affect firm-level cash-holding distributions heterogeneously. But, the impact of the interaction of these two variables is significant only for firms placed in the 60th to 85th quantiles of cash holding distribution.

Originality/value

The study adds to the existing knowledge of determinants of firm-level cash holdings but takes exogenous variables as economic policy uncertainty. The paper builds on a unique sample setting wherein, the cash holdings of all nonfinancial firms have increased many folds, including housing companies in an emerging economy.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 30 April 2024

Reima Daher Alsemiry, Rabea E. Abo Elkhair, Taghreed H. Alarabi, Sana Abdulkream Alharbi, Reem Allogmany and Essam M. Elsaid

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels…

Abstract

Purpose

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels, can also lead to the death of many patients. Therefore, it was necessary to try to control the shear and normal stresses on these veins through nanoparticles in the presence of some external forces, such as exposure to some electromagnetic shocks, to reduce the risk of high pressure and stress on those blood vessels. This study aims to examines the shear and normal stresses of electroosmotic-magnetized Sutterby Buongiorno’s nanofluid in a symmetric peristaltic channel with a moderate Reynolds number and curvature. The production of thermal radiation is also considered. Sutterby nanofluids equations of motion, energy equation, nanoparticles concentration, induced magnetic field and electric potential are calculated without approximation using small and long wavelengths with moderate Reynolds numbers.

Design/methodology/approach

The Adomian decomposition method solves the nonlinear partial differential equations with related boundary conditions. Graphs and tables show flow features and biophysical factors like shear and normal stresses.

Findings

This study found that when curvature and a moderate Reynolds number are present, the non-Newtonian Sutterby fluid raises shear stress across all domains due to velocity decay, resulting in high shear stress. Additionally, modest mobility increases shear stress across all channel domains. The Sutterby parameter causes fluid motion resistance, which results in low energy generation and a decrease in the temperature distribution.

Originality/value

Equations of motion, energy equation, nanoparticle concentration, induced magnetic field and electric potential for Sutterby nano-fluids are obtained without any approximation i.e. the authors take small and long wavelengths and also moderate Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 January 2024

Rolando Gonzales Martinez

The purpose of this study is to propose a methodological approach for modeling catastrophic consequences caused by black swan events, based on complexity science, and framed on…

108

Abstract

Purpose

The purpose of this study is to propose a methodological approach for modeling catastrophic consequences caused by black swan events, based on complexity science, and framed on Feyerabend’s anarchistic theory of knowledge. An empirical application is presented to illustrate the proposed approach.

Design/methodology/approach

Thom’s nonlinear differential equations of morphogenesis are used to develop a theoretical model of the impact of catastrophes on international business (IB). The model is then estimated using real-world data on the performance of multinational airlines during the SARS-CoV-2 (COVID-19) pandemic.

Findings

The catastrophe model exhibits a remarkable capability to simultaneously capture complex linear and nonlinear relationships. Through empirical estimations and simulations, this approach enables the analysis of IB phenomena under normal conditions, as well as during black swan events.

Originality/value

To the best of the author’s knowledge, this study is the first attempt to estimate the impact of black swan events in IB using a catastrophe model grounded in complexity theory. The proposed model successfully integrates the abrupt and profound effects of catastrophes on multinational corporations, offering a critical perspective on the theoretical and practical use of complexity science in IB.

Details

Critical Perspectives on International Business, vol. 20 no. 1
Type: Research Article
ISSN: 1742-2043

Keywords

Article
Publication date: 9 January 2024

Mahendra Saha, Pratibha Pareek, Harsh Tripathi and Anju Devi

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of…

Abstract

Purpose

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of the proposed attribute control chart which depends on the average run length (ARL) and third is to include real life examples for application purpose of the proposed attribute control chart.

Design/methodology/approach

(1) Select a random sample of size n from each subgroup from the production process and put them on a test for specified time t, where t = ? × µe. Then, count the numbers of failed items in each subgroup up to time t. (2) Step 2: Using np chart, define D = np, the number of failures, which also a random variable follows the Binomial distribution. It is better to use D = np chart rather than p chart because the authors are using number of failure rather than proportion of failure p. When the process is in control, then the parameters of the binomial distribution are n and p0, respectively. (3) Step 3: The process is said to be in control if LCL = D = UCL; otherwise, the process is said to be out of control. Hence, LCL and UCL for the proposed control chart.

Findings

From the findings, it is concluded that the GRD has smaller ARL values than the RD for specified values of parameters, which indicate that GRD performing well for out of control signal as compared to the RD.

Research limitations/implications

This developed control chart is applicable when real life situation coincide with RD and GRD.

Social implications

Researcher can directly use presented study and save consumers from accepting bad lot and also encourage producers to make good quality products so that society can take benefit from their products.

Originality/value

This article dealt with time truncated attribute median control chart for non-normal distributions, namely, the RD and GRD, respectively. The structure of the proposed control chart is developed based on median lifetime of the RD and GRD, respectively.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 March 2024

Bo You and Qi Si Wang

The purpose of this paper is to investigate the distribution characteristics of airflow in mine ventilation suits with different pipeline structures when the human body is bent at…

27

Abstract

Purpose

The purpose of this paper is to investigate the distribution characteristics of airflow in mine ventilation suits with different pipeline structures when the human body is bent at various angles. On this basis, the stress points are extracted to investigate the pressure variation of a ventilation suit under different ventilation rates and pipeline structures.

Design/methodology/approach

Based on the three-dimensional human body scanner, portable pressure test and other instruments, a human experiment was conducted in an artificial cabin. The study analyzed and compared the distribution characteristics of clearance under three different pipeline structures, as well as the pressure variation of the ventilation suit.

Findings

The study found that the clearance in front of two pipeline structures gradually increased in size as the degree of bending increased, and there was minimal clearance in the chest and back. The longitudinal structure exhibits a significant decrease in clearance compared to the spiral structure. The pressure value of the spiral pipeline structure with the same ventilation volume is low, followed by the transverse structure, while the longitudinal structure has the highest pressure value. The increase in clothing pressure value of a spiral pipeline structured ventilation suit with varying ventilation volumes is minimal.

Originality/value

The ventilation suit has a promising future as a type of personal protective equipment for mitigating heat damage in mines. It is of great value to study the pipeline structure of the ventilation suit for human comfort.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 27 December 2022

Giacomo Frulla, Enrico Cestino, Federico Cumino, Alessio Piccolo, Nicola Giulietti, Eugenio Fossat and Ehsan Kharrazi

The purpose of this study is to investigate a new and innovative sandwich material evaluating its capability for use in space habitat structural components in deployable and…

1389

Abstract

Purpose

The purpose of this study is to investigate a new and innovative sandwich material evaluating its capability for use in space habitat structural components in deployable and foldable configurations. The main habitat requirements were considered in the preliminary design of a typical space outpost, proposing a preliminary architecture.

Design/methodology/approach

The stiffness properties of the innovative sandwich (MAdFlex ®) were evaluated using numerical and experimental investigations. Four-point bending tests were performed for complete sandwich characterization. Numerical FE simulations were performed using typical material properties and performance. The application to a space habitat main structure as a basic material has also been discussed and presented.

Findings

MAdFlex basic stiffness performances have been determined considering its double behavior: sufficiently stiff if loaded in a specific direction, flexible if loaded in the opposite direction and enhanced folding performance. Successful application to a typical space habitat confirms the validity and convenience of such a material in designing alternative structures.

Research limitations/implications

The innovative material demonstrates wide potential for structural application and design in demanding space situations under operating conditions and in stored ones at launch.

Practical implications

Several simple deployable structural components can be designed and optimized both for the space environment and for the more traditional terrestrial applications.

Social implications

Simplification in structural design can be derived from deployable low-weight items.

Originality/value

Innovative customized material in sandwich configuration has been proposed and investigated with the aim to demonstrate its potentiality and validity in alternative design architecture.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 28 April 2022

Pietro Miglioranza, Andrea Scanu, Giuseppe Simionato, Nicholas Sinigaglia and America Califano

Climate-induced damage is a pressing problem for the preservation of cultural properties. Their physical deterioration is often the cumulative effect of different environmental…

Abstract

Purpose

Climate-induced damage is a pressing problem for the preservation of cultural properties. Their physical deterioration is often the cumulative effect of different environmental hazards of variable intensity. Among these, fluctuations of temperature and relative humidity may cause nonrecoverable physical changes in building envelopes and artifacts made of hygroscopic materials, such as wood. Microclimatic fluctuations may be caused by several factors, including the presence of many visitors within the historical building. Within this framework, the current work is focused on detecting events taking place in two Norwegian stave churches, by identifying the fluctuations in temperature and relative humidity caused by the presence of people attending the public events.

Design/methodology/approach

The identification of such fluctuations and, so, of the presence of people within the churches has been carried out through three different methods. The first is an unsupervised clustering algorithm here termed “density peak,” the second is a supervised deep learning model based on a standard convolutional neural network (CNN) and the third is a novel ad hoc engineering feature approach “unexpected mixing ratio (UMR) peak.”

Findings

While the first two methods may have some instabilities (in terms of precision, recall and normal mutual information [NMI]), the last one shows a promising performance in the detection of microclimatic fluctuations induced by the presence of visitors.

Originality/value

The novelty of this work stands in using both well-established and in-house ad hoc machine learning algorithms in the field of heritage science, proving that these smart approaches could be of extreme usefulness and could lead to quick data analyses, if used properly.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 September 2023

Deepak Kumar, Yongxin Liu, Houbing Song and Sirish Namilae

The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect…

Abstract

Purpose

The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect data sets and can be applied for real-time process control.

Design/methodology/approach

This study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN) model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN.

Findings

This study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%.

Practical implications

Once the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM.

Originality/value

To the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect detection in AM.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 168