Search results

1 – 10 of 840
Article
Publication date: 15 March 2013

Achuthan C. Pankaj, G. Shanthini, M.V. Shivaprasad and M. Manjuprasad

Traditional dynamic and flutter analysis demands a detailed finite element model of the aircraft in terms of its mass and stiffness distribution. However, in absence of these…

Abstract

Purpose

Traditional dynamic and flutter analysis demands a detailed finite element model of the aircraft in terms of its mass and stiffness distribution. However, in absence of these details, modal parameters obtained from experimental tests can be used to predict the flutter characteristics of an aircraft. The purpose of this paper is to develop an improved and reliable method to predict the flutter characteristics of an aircraft structure of unknown configuration under an anticipated aerodynamic loading using software such as MSC Nastran and experimental modal parameters (such as mode shapes, natural frequencies and damping) from ground vibration tests.

Design/methodology/approach

A finite element model with nodes representing the test points on the aircraft is created with appropriate boundary constraints. A direct matrix abstraction program has been written for NASTRAN software that carries out a normal modes analysis and replaces the mass normalized eigenvalues and vectors with the experimentally obtained modal parameters. The flutter analysis proceeds with the solution of the flutter equation in the flutter module of NASTRAN.

Findings

The method has been evaluated for a light composite aircraft and its results have been compared with flight flutter tests and the flutter speeds obtained from the finite element model with actual stiffness and mass distributions of the aircraft.

Research limitations/implications

The methodology developed helps in the realistic prediction of flutter characteristics of a structure with known geometric configuration and does not need material properties, mass or stiffness distributions. However, experimental modal parameters of each configuration of the aircraft are required for flutter speed estimation.

Practical implications

The proposed methodology requires experimental modal parameters of each configuration of the aircraft for flutter speed estimation.

Originality/value

The paper shows that an effective method to predict flutter characteristics using modal parameters from ground vibration tests has been developed.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 31 October 2018

Wojciech Chajec, Wieslaw A. Krzymien and Andreas Strohmayer

The separation of energy conversion and propulsor is a promising aspect of hybrid-electric propulsion systems, allowing for increased installation efficiencies and setting the…

Abstract

Purpose

The separation of energy conversion and propulsor is a promising aspect of hybrid-electric propulsion systems, allowing for increased installation efficiencies and setting the basis for distributed propulsion concepts. University of Stuttgart’s Institute of Aircraft Design has a long experience with electrically powered aircraft, starting with Icaré 2, a solar-powered glider flying, since 1996. Icaré 2 recently has been converted to a three-engine motor glider with two battery-powered wing-tip propellers, in addition to the solar-powered main electric motor. This adds propulsion redundancy and will allow analyzing yaw control concepts with differential thrust and the propeller-vortex interaction at the wing-tip. To ensure airworthiness for this design modification, new ground vibration tests (GVTs) and flutter calculations are required. The purpose of this paper is to lay out the atypical approach to test execution due to peculiarities of the Icaré 2 design such as an asymmetrical aileron control system, the long wing span with low frequencies of the first mode and elevated wing tips bending under gravity and thus affecting the accuracy of the wing torsion frequency measurements.

Design/methodology/approach

A flutter analysis based on GVT results is performed for the aircraft in basic configuration and with wing tip propulsors in pusher or tractor configuration. Apart from the measured resonant modes, the aircraft rigid body modes and the control surface mechanism modes are taken into consideration. The flutter calculations are made by a high-speed, low-cost software named JG2 based on the strip theory in aerodynamics and the V-g method of flutter problem solution.

Findings

With the chosen atypical approach to GVT the impact of the suspension on the test results was shown to be minimal. Flutter analysis has proven that the critical flutter speed of Icaré 2 is sufficiently high in all configurations.

Practical implications

The atypical approach to GVT and subsequent flutter analysis have shown that the effects of wing-tip propulsors on aeroelasticity of the high aspect ratio configuration do not negatively affect flutter characteristics. This analysis can serve as a basis for an application for a permit to fly.

Originality/value

The presented methodology is valuable for the flutter assessment of aircraft configurations with atypical aeroelastic characteristics.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 October 2018

Wojciech Chajec

A low-cost but credible method of low-subsonic flutter analysis based on ground vibration test (GVT) results is presented. The purpose of this paper is a comparison of two methods…

Abstract

Purpose

A low-cost but credible method of low-subsonic flutter analysis based on ground vibration test (GVT) results is presented. The purpose of this paper is a comparison of two methods of immediate flutter problem solution: JG2 – low cost software based on the strip theory in aerodynamics (STA) and V-g method of the flutter problem solution and ZAERO I commercial software with doublet lattice method (DLM) aerodynamic model and G method of the flutter problem solution. In both cases, the same sets of measured normal modes are used.

Design/methodology/approach

Before flutter computation, resonant modes are supplied by some non-measurable but existing modes and processed using the author’s own procedure. For flutter computation, the modes are normalized using the aircraft mass model. The measured mode orthogonalization is possible. The flutter calculation made by means of both methods are performed for the MP-02 Czajka UL aircraft and the Virus SW 121 aircraft of LSA category.

Findings

In most cases, both compared flutter computation results are similar, especially in the case of high aspect wing flutter. The Czajka T-tail flutter analysis using JG2 software is more conservative than the one made by ZAERO, especially in the case of rudder flutter. The differences can be reduced if the proposed rudder effectiveness coefficients are introduced.

Practical implications

The low-cost methods are attractive for flutter analysis of UL and light aircraft. The paper presents the scope of the low-cost JG2 method and its limitations.

Originality/value

In comparison with other works, the measured generalized masses are not used. Additionally, the rudder effectiveness reduction was implemented into the STA. However, Niedbal (1997) introduced corrections of control surface hinge moments, but the present work contains results in comparison with the outcome obtained by means of the more credible software.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 October 2012

Mahdi Fatehi, Majid Moghaddam and Mohammad Rahim

The purpose of this paper is to present a novel approach in aeroservoelastic analysis and robust control of a wing section with two control surfaces in leading‐edge and…

Abstract

Purpose

The purpose of this paper is to present a novel approach in aeroservoelastic analysis and robust control of a wing section with two control surfaces in leading‐edge and trailing‐edge. The method demonstrates how the number of model uncertainties can affect the flutter margin.

Design/methodology/approach

The proposed method effectively incorporates the structural model of a wing section with two degrees of freedom of pitch and plunge with two control surfaces on trailing and leading edges. A quasi‐steady aerodynamics assumption is made for the aerodynamic modeling. Basically, perturbations are considered for the dynamic pressure models and uncertainty parameters are associated with structural stiffness and structural damping and are accounted for in the model by a Linear Fractional Transformation (LFT) model. The control commands are applied to a first and second order electro‐mechanical actuator.

Findings

Dynamic performance of aeroelastic/aeroservoelastic system including time responses, system modal specifications, critical flutter speeds, and stability margins are extracted and compared with each other. Simulation results are validated through experiments and are compared to other existing methods available to the authors. Results of simulations with four structural uncertainties and first order controllers have a good agreement with experimental test results. Furthermore, it is shown that by using a high gain second order controller, the aeroservoelastic (ASE) system does not have any coupling nature in frequency response.

Originality/value

In this study, modeling, simulation, and robust control of a wing section have been investigated utilizing the μAnalysis method and the wing flutter phenomenon is predicted in the presence of multiple uncertainties. The proposed approach is an advanced method compared to conventional flutter analysis methods (such as V‐g or p‐k) for calculating stability margin of aeroelastic/aeroservoelastic systems.

Article
Publication date: 1 October 1960

D.J. Johns and P.C. Parks

The effect of structural damping on panel flutter has received little treatment in the literature but the available information suggests that such an effect may be destabilizing…

Abstract

The effect of structural damping on panel flutter has received little treatment in the literature but the available information suggests that such an effect may be destabilizing. By considering a two‐dimensional, simply‐supported panel and using linear piston theory for the aerodynamic forces an analysis is presented in which the effect of hysteretic structural damping is considered. The main emphasis is on flat unbuckled panels, although a brief investigation of buckled panels is also presented, and it is concluded that there is an interdependence of structural and aerodynamic damping, which in the range of Mach numbers for which piston theory is valid, shows the destabilizing effect of structural damping. This effect is apparently more pronounced at high altitudes. A comprehensive bibliography of panel flutter is also included.

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 January 2007

Altan Kayran

To provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight…

1842

Abstract

Purpose

To provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data.

Design/methodology/approach

Flight flutter test requirements are first reviewed by referencing the relevant civil and military specifications. Excitation systems utilized in flight flutter testing are overviewed by stating the relative advantages and disadvantages of each technique. Flight test procedures followed in a typical flutter flight testing is described for different air speed regimes. Modal estimation methods, both in frequency and time domain, used in flutter prediction are surveyed. Most common flight flutter prediction methods are reviewed. Finally, key considerations for successful flight flutter testing are noted by referencing the related literature.

Findings

Online, real time monitoring of flutter stability during flight testing is very crucial, if the flutter character is not known a priori. Techniques such as modal filtering can be used to uncouple response measurements to produce simplified single degree of freedom responses, which could then be analyzed with less sophisticated algorithms that are more able to run in real time. Frequency domain subspace identification methods combined with time‐frequency multiscale wavelet techniques are considered as the most promising modal estimation algorithms to be used in flight flutter testing.

Practical implications

This study gives concise but relevant information on the flight flutter stability verification of aircraft to the practicing engineer. The three important steps used in flight flutter testing; structural excitation, structural response measurement and stability prediction are introduced by presenting different techniques for each of the three important steps. Emphasis has been given to the practical advantages and disadvantages of each technique.

Originality/value

This paper offers a brief practical guide to all key items involved in flight flutter stability verification of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 October 2018

Robert Rogólski and Aleksander Olejnik

The finite element model developed for a new-designed aircraft was used to solve some problems of structural dynamics. The key purpose of the task was to estimate the critical…

Abstract

Purpose

The finite element model developed for a new-designed aircraft was used to solve some problems of structural dynamics. The key purpose of the task was to estimate the critical flutter velocities of the light airplane by performing numerical analysis with application of MSC Software.

Design/methodology/approach

Flutter analyses processed by Nastran require application of some complex aeroelastic model integrating two separate components – structural model and aerodynamic model. These sub-models are necessary for determining stiffness, mass and aerodynamic matrices, which are involved in the flutter equation. The aircraft structural model with its non-structural masses was developed in Patran. To determine the aerodynamic coefficient matrix, some simplified aerodynamic body-panel geometries were developed. The flutter equation was solved with the PK method.

Findings

The verified aircraft model was used to determine its normal modes in the range of 0-30 Hz. Then, some critical velocities of flutter were calculated within the range of operational velocities. As there is no certainty that the computed modes are in accordance with the natural ones, some parametric calculations are recommended. Modal frequencies depend on structural parameters that are quite difficult to identify. Adopting their values from the reasonable range, it is possible to assign the range of possible frequencies. The frequencies of rudder or elevator modes are dependent on their mass moments of inertia and rigidity of controls. The critical speeds of tail flutter were calculated for various combinations of stiffness or mass values.

Practical implications

The task described here is a preliminary calculational study of normal modes and flutter vibrations. It is necessary to prove the new airplane is free from flutter to fulfil the requirement considered in the type certification process.

Originality/value

The described approach takes into account the uncertainty of results caused by the indeterminacy of selected constructional parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 May 2016

Claudia Bruni, Enrico Cestino and Giacomo Frulla

The purpose of the research activity is to identify the best configuration of piezoelectric (PZT) elements for a typical condition of wing aeroelastic instability. The attention…

Abstract

Purpose

The purpose of the research activity is to identify the best configuration of piezoelectric (PZT) elements for a typical condition of wing aeroelastic instability. The attention is mainly focused on the flutter behavior of the structure. However, the model can be extended with low-impact adjustments to other loading conditions.

Design/methodology/approach

The dynamic system consists of a thin-walled beam, whose longitudinal faces are perfectly bonded by two PZT layers and it is excited by the aerodynamic forces to assume a simple harmonic oscillation motion. The equations of motion are obtained using an energy approach by applying the extended Hamilton principle in conjunction with the Ritz method for modal approximation. The external forces acting on the system are modeled according to the Theodorsen derivation.

Findings

The flutter speed and the power generated from flutter oscillations can be increased by acting on the length of the PZT elements. The results show that the model with the beam substrate totally covered by the PZT in its longitudinal direction is more effective for low electrical resistance, whereas for high resistance values, the beam substrate that is partially covered provides the best results. Furthermore, both flutter postponement and energy harvesting functions can be maximized by properly choosing the beam stiffness ratio.

Practical Implications

Depending on the parameter we want to maximize, that is, the flutter speed or the energy harvested, it is possible to identify the best system configuration from the analysis presented in this paper.

Originality/value

The originality of the work appears in the sensitivity study performed on a three-dimensional piezo-aeroelastic fluttering wing, whose optimal behavior in terms of flutter postponement and power generation is analyzed using two distinct parameters, the beam stiffness ratio and the PZT length.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Levent Ünlüsoy and Yavuz Yaman

The purpose of this paper is to analyse the effects of morphing on the aeroelastic behaviour of unmanned aerial vehicle (UAV) wings to make an emphasis on the required aeroelastic…

Abstract

Purpose

The purpose of this paper is to analyse the effects of morphing on the aeroelastic behaviour of unmanned aerial vehicle (UAV) wings to make an emphasis on the required aeroelastic tailoring starting from the conceptual design of the morphing mechanisms.

Design/methodology/approach

In this study, flutter and divergence characteristics of a fully morphing wing design were discussed to show the dilapidating effect of morphing on the related parameters. The morphing wings were intended to achieve a high efficiency at different flight phases; thus, various morphing concepts were integrated into a UAV wing structure. Although it is considered beneficial to have the morphing capabilities to avoid the failure due to a possible wear out in flutter and divergence parameters; it is necessary to include the aeroelastic analyses at the early design phases. This study utilizes a combination of a reduced order structural model and Theodorsen unsteady aerodynamic model as primary analyses tools for flutter and divergence. The analyses were conducted by using an in-house developed pk-algorithm coupled with a commercial finite element analysis (FEA) tool. This approach yielded a fast solution capacity because of the state-space form used.

Findings

Analyses conducted showed that transition between take-off, climb, cruise and loiter phases yield a change in the flutter and divergence speeds as high as 138 and 305 per cent, respectively.

Practical implications

The research showed that an extensive aeroelastic investigation was required for morphing wing designs to achieve a failure safe design.

Originality/value

The research intends to highlight the possible deteriorating effects on structural design of morphing UAV wings by focusing on the aeroelastic characteristics. In addition to that, fundamental morphing concepts are compared in terms of the order of magnitude of their deteriorating effects.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 April 2022

Xinjiang Wang, Ziqiang Liu, Li Guo, Jinan Lv and Chen Ji

The purpose of this paper is to introduce a novel method to study the flutter coupling mechanism of the twin-fuselage aircraft, which is becoming a popular transportation vehicle…

Abstract

Purpose

The purpose of this paper is to introduce a novel method to study the flutter coupling mechanism of the twin-fuselage aircraft, which is becoming a popular transportation vehicle recently.

Design/methodology/approach

A new method of flutter mode indicator is proposed based on the principle of work and power, which is realized through energy accumulation of generalized force work on generalized coordinates, based on which flutter coupling mechanism of the twin-fuselage aircraft is studied using ground vibration test and computational fluid dynamics/computational solid dynamics method.

Findings

Verification of the proposed flutter mode indicator is provided, by which the flutter mechanism of the twin fuselage is found as the horizontal tail’s torsion coupled with its bending effect and the “frequency drifting” phenomenon of twin-fuselage aircraft is explained logically, highlighting the proposed method in this paper.

Originality/value

This paper proposed a new method of flutter mode indicator, which has advantages in flutter modes indexes reliability, clear physical meaning and results normalization. This study found the flutter coupling mechanism of twin-fuselage aircraft, which has important guiding significance to the development of twin-fuselage aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 840