Search results

1 – 10 of over 24000
Article
Publication date: 23 January 2024

Young Jin Shin, Ebrahim Farrokh, Jaehoon Jung, Jaewon Lee and Hanbyul Kang

Despite the many advantages this type of equipment offers, there are still some major drawbacks. Linear cutting machine (LCM) cannot accurately simulate the true rock-cutting…

Abstract

Purpose

Despite the many advantages this type of equipment offers, there are still some major drawbacks. Linear cutting machine (LCM) cannot accurately simulate the true rock-cutting process as 1. it does not account for the circular path along which tunnel boring machine (TBM) disk cutters cut the tunnel face, 2. it does not accurately model the position of a disk cutter on the cutterhead, 3. it cannot perfectly replicate the rotational speed of a TBM. To enhance the knowledge of these issues and in order to mimic the real rock-cutting process, a new lab testing equipment was developed by Hyundai Engineering and Construction.

Design/methodology/approach

A new testing machine called rotary cutting machine (RCM) is designed to simulate the excavation process of hard-rock TBMs and includes features such as TBM cutterhead, RPM simulation, constant normal force mode and constant penetration rate mode. Two sets of tests were conducted on Hwandeung granite using different disk cutter sizes to analyze the cutting forces in various excavation modes. The results are analyzed using statistical analysis and dimensional analysis. A new model is generated using dimensional analysis, and its results are compared against the results of actual cases.

Findings

The effectiveness of the new RCM test was demonstrated in its ability to apply various modes of excavation. Initial analysis of chip size revealed that the thickness of the chips is largely dependent on the cutter spacing. Tests with varying RPM showed that an increase in RPM results in an increase in the normal force and rolling force. The cutting coefficient (CC) demonstrated a linear correlation with penetration. The optimal specific energy is achieved at an S/p ratio of around 15. However, a slightly lower S/p ratio can also be used in the design if the cutter specifications permit. A dimensional analysis was utilized to develop a new RCM model based on the results from approximately 1200 tests. The model's applicability was demonstrated through a comparison of TBM penetration data from 26 tunnel projects globally. Results indicated that the predicted penetration rates by the RCM test model were in good agreement with actual rates for the majority of cases. However, further investigation is necessary for softer rock types, which will be conducted in the future using concrete blocks.

Originality/value

The originality of the research lies in the development of Hyundai Engineering and Construction’s advanced full-scale laboratory rotary cutting machine (RCM), which accurately replicates the excavation process of hard-rock tunnel boring machines (TBMs). The study provides valuable insights into cutting forces, chip size, specific energy, RPM and excavation modes, enhancing understanding and decision-making in hard-rock excavation processes. The research also presents a new RCM model validated against TBM penetration data, demonstrating its practical applicability and predictive accuracy.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 1996

Zhang Wu

Explains that the shifts of a process may be classified into a set of modes (or classifications), each of which is incurred by an assignable cause. Presents an algorithm to…

543

Abstract

Explains that the shifts of a process may be classified into a set of modes (or classifications), each of which is incurred by an assignable cause. Presents an algorithm to determine the process shift mode and estimate the run length when an out‐of‐control status is signalled by the x‐ or s chart in statistical process control. The information regarding the process shift mode and run length is very useful for diagnosing the assignable cause correctly and promptly. The algorithm includes two stages. First, the process shift modes are established using the sample data acquired during an explorative run. Afterwards, whenever an out‐of‐control case is detected, Bayes’ rule is employed to determine the active process shift mode and estimate the run length. In simulation tests, the proposed algorithm attains a fairly high probability (around 0.85) of correctly determining the active process shift mode and estimating the run length.

Details

International Journal of Quality & Reliability Management, vol. 13 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 4 July 2022

Kari Lukka, Sven Modell and Eija Vinnari

This paper examines the influence of the normal science tradition, epitomized by the notion that “theory is king”, on contemporary accounting research and the epistemological…

2638

Abstract

Purpose

This paper examines the influence of the normal science tradition, epitomized by the notion that “theory is king”, on contemporary accounting research and the epistemological tensions that may emerge as this idea is applied to particular ways of studying accounting. For illustrative purposes, the authors focus on research informed by actor-network theory (ANT) which can be seen as an “extreme case” in the sense that it is, in principle, difficult to reconcile with the normal science aspirations.

Design/methodology/approach

The paper offers an analysis based on a close reading of how accounting scholars, using ANT, theorize, and if they do engage in explicit theorizing, how they deal with the tensions that might emerge from the need to reconcile its epistemological underpinnings with those of the normal science tradition.

Findings

The findings of this paper show that the tensions between normal science thinking and the epistemological principles of ANT have, in a few cases, been avoided, as researchers stay relatively faithful to ANT and largely refrain from further theory development. However, in most cases, the tensions have ostensibly been ignored as researchers blend the epistemology of ANT and that of normal science without reflecting on the implications of doing so.

Originality/value

The paper contributes to emerging debates on the role of the normal science tradition in contemporary accounting research, and also extends recent discussions on the role of theory in accounting research inspired by ANT. The paper proposes three reasons for the observed blending of epistemologies: unawareness of tensions, epistemological eclecticism and various political considerations.

Details

Accounting, Auditing & Accountability Journal, vol. 35 no. 9
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 1 March 1950

TO deliver a lecture in commemoration of the Wright Brothers before the Institute of Aeronautical Sciences is a great honour of which I am deeply aware: this honour one feels is…

Abstract

TO deliver a lecture in commemoration of the Wright Brothers before the Institute of Aeronautical Sciences is a great honour of which I am deeply aware: this honour one feels is due not solely to the technical situation but to somemore subtle link between the Institute and the Royal Aeronautical Society and our two countries.

Details

Aircraft Engineering and Aerospace Technology, vol. 22 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 31 October 2018

Wojciech Chajec, Wieslaw A. Krzymien and Andreas Strohmayer

The separation of energy conversion and propulsor is a promising aspect of hybrid-electric propulsion systems, allowing for increased installation efficiencies and setting the…

Abstract

Purpose

The separation of energy conversion and propulsor is a promising aspect of hybrid-electric propulsion systems, allowing for increased installation efficiencies and setting the basis for distributed propulsion concepts. University of Stuttgart’s Institute of Aircraft Design has a long experience with electrically powered aircraft, starting with Icaré 2, a solar-powered glider flying, since 1996. Icaré 2 recently has been converted to a three-engine motor glider with two battery-powered wing-tip propellers, in addition to the solar-powered main electric motor. This adds propulsion redundancy and will allow analyzing yaw control concepts with differential thrust and the propeller-vortex interaction at the wing-tip. To ensure airworthiness for this design modification, new ground vibration tests (GVTs) and flutter calculations are required. The purpose of this paper is to lay out the atypical approach to test execution due to peculiarities of the Icaré 2 design such as an asymmetrical aileron control system, the long wing span with low frequencies of the first mode and elevated wing tips bending under gravity and thus affecting the accuracy of the wing torsion frequency measurements.

Design/methodology/approach

A flutter analysis based on GVT results is performed for the aircraft in basic configuration and with wing tip propulsors in pusher or tractor configuration. Apart from the measured resonant modes, the aircraft rigid body modes and the control surface mechanism modes are taken into consideration. The flutter calculations are made by a high-speed, low-cost software named JG2 based on the strip theory in aerodynamics and the V-g method of flutter problem solution.

Findings

With the chosen atypical approach to GVT the impact of the suspension on the test results was shown to be minimal. Flutter analysis has proven that the critical flutter speed of Icaré 2 is sufficiently high in all configurations.

Practical implications

The atypical approach to GVT and subsequent flutter analysis have shown that the effects of wing-tip propulsors on aeroelasticity of the high aspect ratio configuration do not negatively affect flutter characteristics. This analysis can serve as a basis for an application for a permit to fly.

Originality/value

The presented methodology is valuable for the flutter assessment of aircraft configurations with atypical aeroelastic characteristics.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 February 2021

Devender Sheoran, Rajesh Kumar, Seema Thakran and Kapil Kumar Kalkal

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under…

Abstract

Purpose

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under the purview of the Green-Naghdi model II of generalized thermoelasticity. The formulation is subjected to a mechanical load.

Design/methodology/approach

The normal mode analysis technique is adopted to procure the exact solution of the problem.

Findings

For isothermal and insulated boundaries, discussions have been made to highlight the influences of rotational speed, nonlocality, temperature-dependent properties and time on the physical quantities.

Originality/value

The exact expressions for the displacement components, stresses and temperature field are obtained in the physical domain. These are also calculated numerically for a magnesium crystal-like material and depicted through graphs to observe the variations of the considered physical quantities. The present study is useful and valuable for the analysis of problems involving mechanical shock, rotational speed, nonlocal parameter, temperature-dependent properties and elastic deformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1969

THE automatic flight control system (AFCS) for the Concorde has been jointly developed by Elliott‐Automation Ltd. and SFENA (Société Francaise pour la Navigation Aérienne) for the…

Abstract

THE automatic flight control system (AFCS) for the Concorde has been jointly developed by Elliott‐Automation Ltd. and SFENA (Société Francaise pour la Navigation Aérienne) for the production aircraft. Elliott carry the overall design responsibility and the equipment will be supported in the field by both Elliott and SFENA. The pitch axis of the autopilot and flight director, the autothrottle, all aspects of the control of speed, all pilot/ AFCS interfaces and the landing display are Elliott responsibilities for the pre‐production and production aircraft, while SFENA are responsible for the three‐axis autostabiliser, azimuth axes of the autopilot and flight director, electric trim system and the flight test instrumentation for the AFCS. The Bendix Corporation participated in the programme for the prototype aircraft with the design and manufacture of the azimuth axes of the autopilot and flight director, and the electric trim system.

Details

Aircraft Engineering and Aerospace Technology, vol. 41 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 10 January 2023

Devender Sheoran, Komal Yadav, Baljit Singh Punia and Kapil Kumar Kalkal

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE…

Abstract

Purpose

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE theories: Lord–Shulman (LS) and Green–Lindsay (GL). The governing equations are derived in rectangular Cartesian coordinates for a two dimensional problem.

Design/methodology/approach

All the physical properties of the semiconductor are supposed to vary exponentially with distance. The analytical solution is procured by employing normal mode technique on the resulting non-dimensional coupled field equations with appropriate boundary conditions.

Findings

For the mechanically loaded thermally insulated surface, normal displacement, stress components, temperature distribution and carrier density are calculated numerically with the help of MATLAB software for a silicon semiconductor and displayed graphically. Some particular cases of interest have also been deduced from the present results.

Originality/value

The effects of rotation and non-homogeneity on the different physical fields are investigated on the basis of analytical and numerical results. Comparisons are made with the results predicted by GL theory in the presence and absence of gravity for different values of time. Comparisons are also made between the three theories in the presence of rotation, gravity and in-homogeneity. Such problems are very important in many dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 September 2021

Sunil Kumar, Aarti Kadian and Kapil Kumar Kalkal

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface…

Abstract

Purpose

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface is subjected to an inclined mechanical load. The present study is carried out under the influence of gravity.

Design/methodology/approach

The normal mode technique is used to obtain the exact expressions of the physical fields.

Findings

For inclined mechanical load, the impact of micropolarity, nonlocal parameter, gravity and inclination angle have been highlighted on the considered physical fields.

Originality/value

The numerical results are computed for various physical quantities such as displacement, stresses and temperature for a magnesium crystal-like material and are illustrated graphically. The study is valuable for the analysis of thermoelastic problems involving gravitational field, nonlocal parameter, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 June 2020

Kanika Monga, Nitin Chaturvedi and S. Gurunarayanan

Emerging event-driven applications such as the internet-of-things requires an ultra-low power operation to prolong battery life. Shutting down non-functional block during standby…

Abstract

Purpose

Emerging event-driven applications such as the internet-of-things requires an ultra-low power operation to prolong battery life. Shutting down non-functional block during standby mode is an efficient way to save power. However, it results in a loss of system state, and a considerable amount of energy is required to restore the system state. Conventional state retentive flip-flops have an “Always ON” circuitry, which results in large leakage power consumption, especially during long standby periods. Therefore, this paper aims to explore the emerging non-volatile memory element spin transfer torque-magnetic tunnel junction (STT-MTJ) as one the prospective candidate to obtain a low-power solution to state retention.

Design/methodology/approach

The conventional D flip-flop is modified by using STT-MTJ to incorporate non-volatility in slave latch. Two novel designs are proposed in this paper, which can store the data of a flip-flip into the MTJs before power off and restores after power on to resume the operation from pre-standby state.

Findings

A comparison of the proposed design with the conventional state retentive flip-flop shows 100 per cent reduction in leakage power during standby mode with 66-69 per cent active power and 55-64 per cent delay overhead. Also, a comparison with existing MTJ-based non-volatile flip-flop shows a reduction in energy consumption and area overhead. Furthermore, use of a fully depleted-silicon on insulator and fin field-effect transistor substituting a complementary metal oxide semiconductor results in 70-80 per cent reduction in the total power consumption.

Originality/value

Two novel state-retentive D flip-flops using STT-MTJ are proposed in this paper, which aims to obtain zero leakage power during standby mode.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 24000