Search results

1 – 10 of 316
Article
Publication date: 3 January 2017

Levent Ünlüsoy and Yavuz Yaman

The purpose of this paper is to analyse the effects of morphing on the aeroelastic behaviour of unmanned aerial vehicle (UAV) wings to make an emphasis on the required aeroelastic…

Abstract

Purpose

The purpose of this paper is to analyse the effects of morphing on the aeroelastic behaviour of unmanned aerial vehicle (UAV) wings to make an emphasis on the required aeroelastic tailoring starting from the conceptual design of the morphing mechanisms.

Design/methodology/approach

In this study, flutter and divergence characteristics of a fully morphing wing design were discussed to show the dilapidating effect of morphing on the related parameters. The morphing wings were intended to achieve a high efficiency at different flight phases; thus, various morphing concepts were integrated into a UAV wing structure. Although it is considered beneficial to have the morphing capabilities to avoid the failure due to a possible wear out in flutter and divergence parameters; it is necessary to include the aeroelastic analyses at the early design phases. This study utilizes a combination of a reduced order structural model and Theodorsen unsteady aerodynamic model as primary analyses tools for flutter and divergence. The analyses were conducted by using an in-house developed pk-algorithm coupled with a commercial finite element analysis (FEA) tool. This approach yielded a fast solution capacity because of the state-space form used.

Findings

Analyses conducted showed that transition between take-off, climb, cruise and loiter phases yield a change in the flutter and divergence speeds as high as 138 and 305 per cent, respectively.

Practical implications

The research showed that an extensive aeroelastic investigation was required for morphing wing designs to achieve a failure safe design.

Originality/value

The research intends to highlight the possible deteriorating effects on structural design of morphing UAV wings by focusing on the aeroelastic characteristics. In addition to that, fundamental morphing concepts are compared in terms of the order of magnitude of their deteriorating effects.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 October 2018

Witold Artur Klimczyk and Zdobyslaw Jan Goraj

The purpose of this paper is to present a method for analysis and optimization of morphing wing. Moreover, a numerical advantage of morphing airfoil wing, typically assessed in…

Abstract

Purpose

The purpose of this paper is to present a method for analysis and optimization of morphing wing. Moreover, a numerical advantage of morphing airfoil wing, typically assessed in simplified two-dimensional analysis is found using higher fidelity methods.

Design/methodology/approach

Because of multi-point nature of morphing wing optimization, an approach for optimization by analysis is presented. Starting from naïve parametrization, multi-fidelity aerodynamic data are used to construct response surface model. From the model, many significant information are extracted related to parameters effect on objective; hence, design sensitivity and, ultimately, optimal solution can be found.

Findings

The method was tested on benchmark problem, with some easy-to-predict results. All of them were confirmed, along with additional information on morphing trailing edge wings. It was found that wing with morphing trailing edge has around 10 per cent lower drag for the same lift requirement when compared to conventional design.

Practical implications

It is demonstrated that providing a smooth surface on wing gives substantial improvement in multi-purpose aircrafts. Details on how this is achieved are described. The metodology and results presented in current paper can be used in further development of morphing wing.

Originality/value

Most of literature describing morphing airfoil design, optimization or calculations, performs only 2D analysis. Furthermore, the comparison is often based on low-fidelity aerodynamic models. This paper uses 3D, multi-fidelity aerodynamic models. The results confirm that this approach reveals information unavailable with simplified models.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2016

Srinivas Vasista, Alessandro De Gaspari, Sergio Ricci, Johannes Riemenschneider, Hans Peter Monner and Bram van de Kamp

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR…

1042

Abstract

Purpose

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices.

Design/methodology/approach

The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept.

Findings

It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests.

Practical implications

The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts.

Originality/value

The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2018

Jinwu Xiang, Kai Liu, Daochun Li, Chunxiao Cheng and Enlai Sha

The purpose of this paper is to investigate the unsteady aerodynamic characteristics in the deflection process of a morphing wing with flexible trailing edge, which is based on…

496

Abstract

Purpose

The purpose of this paper is to investigate the unsteady aerodynamic characteristics in the deflection process of a morphing wing with flexible trailing edge, which is based on time-accurate solutions. The dynamic effect of deflection process on the aerodynamics of morphing wing was studied.

Design/methodology/approach

The computational fluid dynamic method and dynamic mesh combined with user-defined functions were used to simulate the continuous morphing of the flexible trailing edge. The steady aerodynamic characteristics of the morphing deflection and the conventional deflection were studied first. Then, the unsteady aerodynamic characteristics of the morphing wing were investigated as the trailing edge deflects at different rates.

Findings

The numerical results show that the transient lift coefficient in the deflection process is higher than that of the static case one in large angle of attack. The larger the deflection frequency is, the higher the transient lift coefficient will become. However, the situations are contrary in a small angle of attack. The periodic morphing of the trailing edge with small amplitude and high frequency can increase the lift coefficient after the stall angle.

Practical implications

The investigation can afford accurate aerodynamic information for the design of aircraft with the morphing wing technology, which has significant advantages in aerodynamic efficiency and control performance.

Originality/value

The dynamic effects of the deflection process of the morphing trailing edge on aerodynamics were studied. Furthermore, time-accurate solutions can fully explore the unsteady aerodynamics and pressure distribution of the morphing wing.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2017

Andrzej Tarnowski

This paper aims to describe the concept of morphing tailless aircraft with discontinuous skin and its preliminary kinematic solution. Project assumptions, next steps and expected…

Abstract

Purpose

This paper aims to describe the concept of morphing tailless aircraft with discontinuous skin and its preliminary kinematic solution. Project assumptions, next steps and expected results are briefly presented.

Design/methodology/approach

Multidisciplinary numerical optimization will be used to determine control allocation for wing segments rotation. Wing demonstrator will be fabricated and tested in wind tunnel. Results will be used in construction of flying model and design of its control system. Flight data of morphing demonstrator and reference aircraft will result in comparative analysis of both technologies.

Findings

Proposed design combines advantages of wing morphing without complications of wing’s structure elastic deformation. Better performance, stability and maneuverability is expected due to wing’s construction which is entirely composed of unconnected wing segments. Independent control of each segment allows for free modeling of spanwise lift force distribution.

Originality/value

Nonlinear multipoint distribution of wing twist as the only mechanism for control and flight performance optimization has never been studied or constructed. Planned wind tunnel investigation of such complex aerodynamic structure has not been previously published and will be an original contribution to the development of aviation and in particular to the aerodynamics of wing with discontinuous skin.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2020

Abderahmane Marouf, Yannick Bmegaptche Tekap, Nikolaos Simiriotis, Jean-Baptiste Tô, Jean-François Rouchon, Yannick Hoarau and Marianna Braza

The purpose of this study illustrates the morphing effects around a large-scale high-lift configuration of the Airbus A320 with two elements airfoil-flap in the take-off position…

Abstract

Purpose

The purpose of this study illustrates the morphing effects around a large-scale high-lift configuration of the Airbus A320 with two elements airfoil-flap in the take-off position. The flow around the airfoil-flap and the near wake are analysed in the static case and under time-dependent vibration of the flap trailing-edge known as the dynamic morphing.

Design/methodology/approach

Experimental results obtained in the subsonic wind tunnel S1 of Institut de Mécanique des Fluides de Toulouse of a single wing are discussed with high-fidelity numerical results obtained by using the Navier–Stokes multi-block (NSMB) code with advanced turbulent modelling able to capture the predominant instabilities and coherent structure dynamics. An explanation of the dynamic time-dependent grid deformation is provided, which is used in the NSMB code to simulate the flap’s trailing-edge deformation in the morphing configuration. Finally, power spectral density is performed to reveal the coherent wake structures and their modification because of the morphing.

Findings

Frequency of vibration and amplitude of deformation effects are investigated for different morphing cases. Optimal morphing regions at a specific frequency and a slight deformation were able to attenuate the predominant natural shear-layer frequency and to considerably decrease the width of the von Kármán vortices with a simultaneous increase of aerodynamic performances.

Originality/value

The new concept of future morphed wings is proposed for a large scale A320 prototype at the take-off position. The dynamic morphing of the flap’s trailing-edge is simulated for the first time for high-lift two-element configuration. In addition, the wake analysis performed helped to show the turbulent structures according to the organised eddy simulation model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

Daochun Li, Shijun Guo, Tariq Osman Aburass, Daqing Yang and Jinwu Xiang

The purpose of this study is to develop an active controller of both leading-edge (LE) and trailing-edge (TE) control surfaces for an unmanned air vehicle (UAV) with a composite…

Abstract

Purpose

The purpose of this study is to develop an active controller of both leading-edge (LE) and trailing-edge (TE) control surfaces for an unmanned air vehicle (UAV) with a composite morphing wing.

Design/methodology/approach

Instead of conventional hinged control surfaces, both LE and TE seamless control surfaces were integrated with the wing. Based on the longitudinal state space equation, the root locus plot of the morphing wing aircraft, with a stability augmented system, was constructed. Using the pole placement, the feedback gain matrix for an active control was obtained.

Findings

The aerodynamic benefits of a morphing wing section are compared with a wing of a rigid control surface. However, the 3D morphing wing with a large sweptback angle produces a washout negative aeroelastic effect, which causes a significant reduction of the control effectiveness. The results show that the stability augmentation system can significantly improve the longitudinal controllability of an aircraft with a morphing wing.

Practical implications

This study is necessary to analyse the effect of a morphing wing on an UAV and perform a comparison with the rigid model.

Originality/value

The control surfaces assignment plan for trim, pitch and roll control was obtained. An active control algorism for the morphing wing was created to satisfy the required stability and control effectiveness by operating the LE and TE control surfaces according to flight conditions. The aeroelastic effect of control derivatives on the morphing aircraft was considered.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 February 2023

Abderahmane Marouf, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the effects of electroactive morphing on the Airbus A320 Reduced Scale prototype of the H2020 N° 723402 European Research project smart morphing and…

Abstract

Purpose

This study aims to investigate the effects of electroactive morphing on the Airbus A320 Reduced Scale prototype of the H2020 N° 723402 European Research project smart morphing and sensing (SMS) for aeronautical configurations [1],[2].

Design/methodology/approach

The flow regimes correspond to low subsonic take-off conditions. The morphing is applied through the vibration and slight deformation of the near trailing edge region; respecting the way, this actuation has been applied on the experimental prototype using micro fibre composite actuators. Optimal frequency range has been used, associated with low amplitudes of deformation with the Arbitrary Lagrangian Eulerian methodology. This study used an adapted turbulence modelling with the organised eddy simulation (OES) as well as a hybrid approach delayed detached eddy simulation – with embedded OES (DDES–OES), able to sensitise and keep up the coherent structures development.

Findings

The morphing at an optimal frequency (300 Hz) and amplitude (0.7 mm), applied on a length (3.5 cm) near the trailing edge, has been studied at Reynolds number 1 million and incidence of 10°. The effects on the main flow instabilities and on the turbulent vortex structures are analysed using proper orthogonal decomposition. A modification of the wake structures and a formation of organised rows of vortices along the shear layer are obtained. This leads to a quasi-two-dimensional wake, benefits on the aerodynamic performance and a decrease of the frequency peaks in the spectrum, corresponding to an attenuation of the coherent structures.

Originality/value

This study provides a fundamental understanding of how the actuation modifies the coherent and turbulent vortex structures around the wing and in the wake.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Chawki Abdessemed, Yufeng Yao, Abdessalem Bouferrouk and Pritesh Narayan

The purpose of this paper is to use dynamic meshing to perform CFD analyses of a NACA 0012 airfoil fitted with a morphing trailing edge (TE) flap when it undergoes static and…

Abstract

Purpose

The purpose of this paper is to use dynamic meshing to perform CFD analyses of a NACA 0012 airfoil fitted with a morphing trailing edge (TE) flap when it undergoes static and time-dependent morphing. The steady CFD predictions of the original and morphing airfoils are validated against published data. The study also investigates an airfoil with a hinged TE flap for aerodynamic performance comparison. The study further extends to an unsteady CFD analysis of a dynamically morphing TE flap for proof-of-concept and also to realise its potential for future applications.

Design/methodology/approach

An existing parametrization method was modified and implemented in a user-defined function (UDF) to perform dynamic meshing which is essential for morphing airfoil unsteady simulations. The results from the deformed mesh were verified to ensure the validity of the adopted mesh deformation method. ANSYS Fluent software was used to perform steady and unsteady analysis and the results were compared with computational predictions.

Findings

Steady computational results are in good agreement with those from OpenFOAM for a non-morphing airfoil and for a morphed airfoil with a maximum TE deflection equal to 5 per cent of the chord. The results obtained by ANSYS Fluent show that an average of 6.5 per cent increase in lift-to-drag ratio is achieved, compared with a hinged flap airfoil with the same TE deflection. By using dynamic meshing, unsteady transient simulations reveal that the local flow field is influenced by the morphing motion.

Originality/value

An airfoil parametrisation method was modified to introduce time-dependent morphing and used to drive dynamic meshing through an in-house-developed UDF. The morphed airfoil’s superior aerodynamic performance was demonstrated in comparison with traditional hinged TE flap. A methodology was developed to perform unsteady transient analysis of a morphing airfoil at high angles of attack beyond stall and to compare with published data. Unsteady predictions have shown signs of rich flow features, paving the way for further research into the effects of a dynamic flap on the flow physics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 316