Search results

1 – 10 of 140
Article
Publication date: 7 November 2016

Babak Lotfi, Bengt Sunden and Qiu-Wang Wang

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in…

428

Abstract

Purpose

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver.

Design/methodology/approach

A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region.

Findings

Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs.

Originality/value

This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.

Article
Publication date: 25 September 2019

Khalil Khanafer and K. Vafai

This study aims to investigate a critical review on the applications of fluid-structure interaction (FSI) in porous media.

Abstract

Purpose

This study aims to investigate a critical review on the applications of fluid-structure interaction (FSI) in porous media.

Design/methodology/approach

Transport phenomena in porous media are of continuing interest by many researchers in the literature because of its significant applications in engineering and biomedical sectors. Such applications include thermal management of high heat flux electronic devices, heat exchangers, thermal insulation in buildings, oil recovery, transport in biological tissues and tissue engineering. FSI is becoming an important tool in the design process to fully understand the interaction between fluids and structures.

Findings

This study is structured in three sections: the first part summarizes some important studies on the applications of porous medium and FSI in various engineering and biomedical applications. The second part focuses on the applications of FSI in porous media as related to hyperthermia. The third part of this review is allocated to the applications of FSI of convection flow and heat transfer in engineering systems filled with porous medium.

Research limitations/implications

To the best knowledge of the present authors, FSI analysis of turbulent flow in porous medium never been studied, and therefore, more attention should be given to this area in any future studies. Moreover, more studies should also be conducted on mixed convective flow and heat transfer in systems using porous medium and FSI.

Practical implications

The wall of the blood vessel is considered as a flexible multilayer porous medium, and therefore, rigid wall analysis is not accurate, and therefore, FSI should be implemented for accurate predictions of flow and hemodynamic stresses.

Social implications

The use of porous media theory in biomedical applications received a great attention by many investigators in the literature (Khanafer and Vafai, 2006a; Al-Amiri et al., 2014; Lasiello et al., 2016a, Lasiello et al., 2016b; Lasiello et al., 2015; Chung and Vafai, 2013; Mahjoob and Vafai, 2009; Yang and Vafai, 2008; Yang and Vafai, 2006; Ai and Vafai, 2006). A comprehensive review was conducted by Khanafer and Vafai (2006b) summarizing various studies associated with magnetic field imaging and drug delivery. The authors illustrated that the tortuosity and porosity had a profound effect on the diffusion process within the brain. AlAmiri et al. (2014) conducted a numerical study to investigate the effect of turbulent pulsatile flow and heating technique on the thermal distribution within the arterial wall. The results of that investigation illustrated that local heat flux variation along the bottom layer of the tumor was greater for the low-velocity condition. Yang and Vafai (2006) presented a comprehensive four-layer model to study low-density lipoprotein transport in the arterial wall coupled with a lumen (Figure 1). All the four layers (endothelium, intima, internal elastic lamina and media) were modeled as a homogenous porous medium.

Originality/value

Future studies on the applications of FSI in porous media are recommended in this review.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 April 2023

Yajing Hu, Botong Li, Xinhui Si, Jing Zhu and Linyu Meng

Atherosclerosis tends to occur in the distinctive carotid sinus, leading to vascular stenosis and then causing death. The purpose of this paper is to investigate the effect of…

Abstract

Purpose

Atherosclerosis tends to occur in the distinctive carotid sinus, leading to vascular stenosis and then causing death. The purpose of this paper is to investigate the effect of sinus sizes, positions and hematocrit on blood flow dynamics and heat transfer by different numerical approaches.

Design/methodology/approach

The fluid flow and heat transfer in the carotid artery with three different sinus sizes, three different sinus locations and four different hematocrits are studied by both computational fluid dynamics (CFD) and fluid-structure interaction (FSI) methods. An ideal geometric model and temperature-dependent non-Newtonian viscosity are adopted, while the wall heat flux concerning convection, radiation and evaporation is used.

Findings

With increasing sinus size, the average velocity and temperature of the blood fluid decrease, and the area of time average wall shear stress (TAWSS)with small values decreases. As the distances between sinuses and bifurcation points increase, the average temperature and the maximum TAWSS decrease. Atherosclerosis is more likely to develop when the sinuses are enlarged, when the sinuses are far from bifurcation points, or when the hematocrit is relatively large or small. The probability of thrombosis forming and developing becomes larger when the sinus becomes larger and the hematocrit is small enough. The movement of the arterial wall obviously reduces the velocity of blood flow, blood temperature and WSS. This study also suggests that the elastic role of arterial walls cannot be ignored.

Originality/value

The hemodynamics of the internal carotid artery sinus in a carotid artery with a bifurcation structure have been investigated thoroughly, on which the impacts of many factors have been considered, including the non-Newtonian behavior of blood and empirical boundary conditions. The results when the FSI is considered and absent are compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2019

Corrado Groth, Ubaldo Cella, Emiliano Costa and Marco Evangelos Biancolini

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Abstract

Purpose

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Design/methodology/approach

High fidelity computer-aided engineering models (computational fluid dynamics [CFD] and computational structural mechanics) are coupled by embedding modal shapes into the CFD solver using RBF mesh morphing.

Findings

The theoretical framework is first explained and its use is then demonstrated with a review of applications including both steady and unsteady cases. Different flow and structural solvers are considered to showcase the portability of the concept.

Practical implications

The method is flexible and can be used for the simulation of complex scenarios, including components vibrations induced by external devices, as in the case of flapping wings.

Originality/value

The computation mesh of the CFD model becomes parametric with respect to the modal shape and, so, capable to self-adapt to the loads exerted by the surrounding fluid both for steady and transient numerical studies.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 October 2018

Farhoud Kalateh and Ali Koosheh

This paper aims to propose a new smoothed particle hydrodynamics (SPH)-finite element (FE) algorithm to study fluidstructure interaction (FSI) problems.

Abstract

Purpose

This paper aims to propose a new smoothed particle hydrodynamics (SPH)-finite element (FE) algorithm to study fluidstructure interaction (FSI) problems.

Design/methodology/approach

The fluid domain is discretized based on the theory of SPH), and solid part is solved through FE method, similar to other SPH-FE methods in the previous studies. Instead of master-slave technique, the interpolating (kernel) functions of immersed boundary method are implemented to couple fluid and solid domains. The procedure of modeling completely follows the classic IB framework where forces and velocities are transferred between interacting parts. Three benchmark FSI problems are simulated and the results are compared with those of similar numerical and experimental works.

Findings

The proposed SPH-FE algorithm with promising and acceptable results can be utilized as a reliable method to simulate FSI problems.

Originality/value

Contrary to most SPH-FE algorithms, the calculation of contact force is not required at interacting boundaries and no iterative process is proposed to calculate forces, velocities and positions at new time step.

Details

Engineering Computations, vol. 35 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 August 2021

Lydia Khouf, Mustapha Benaouicha, Abdelghani Seghir and Sylvain Guillou

The paper aims to present a numerical modeling procedure for the analysis of liquid sloshing in a flexible tank subjected to an external excitation, with taking into account the…

Abstract

Purpose

The paper aims to present a numerical modeling procedure for the analysis of liquid sloshing in a flexible tank subjected to an external excitation, with taking into account the effects of fluidstructure interaction (FSI).

Design/methodology/approach

A numerical model based on coupling a two-phase flow solver and an elastic solid solver is developed in OpenFOAM code. The Arbitrary Lagrangian–Eulerian formulation is adopted for the two-phase Navier–Stokes equations in a moving domain. The volume of fluid (VOF) method is applied for the air–liquid interface tracking. The finite volume method is used for the spatial discretization of both the fluid and the structure dynamics equations. The FSI coupling problem is solved by an explicit coupling scheme. The model is validated for linear and nonlinear sloshing cases. Then, it is used to analyze the effects of the liquid sloshing on the dynamic response of the tank and the effects of the tank flexibility on the liquid sloshing.

Findings

The obtained results show that the flexibility of the tank walls amplifies the amplitude of the sloshing and increases the fluctuation period of the air–liquid interface. Furthermore, it is found that the bending moment acting on the tank walls may be underestimated when rigid walls assumption is adopted as usually done in sloshing tank modeling. Also, tank walls flexibility causes a phase shift in the free surface dynamic response.

Originality/value

A review of previous studies on liquid sloshing in flexible tanks revealed that FSI effects have not been clearly and comprehensively analyzed for large-amplitude liquid sloshing. Many physical and numerical aspects of this problem still require clarifications and enhancements. The added value of the present work and its originality lie in the investigation of large-amplitude liquid sloshing in flexible tanks by using a staggered coupling approach. This approach is carried out by an original combination of a linear solid solver with a two phase fluid solver in OpenFOAM code. In addition, FSI effects on some response quantities, identified and analyzed herein, have not been found in the previous works.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 December 2006

Y.W. Kwon

To develop a technique to couple the lattice Boltzmann method (LBM) and the finite element method (FEM) to solve fluidstructure interaction (FSI) problems.

1144

Abstract

Purpose

To develop a technique to couple the lattice Boltzmann method (LBM) and the finite element method (FEM) to solve fluidstructure interaction (FSI) problems.

Design/methodology/approach

The FEM was applied to structural analysis while the LBM was applied to fluid flow analysis. The two techniques were coupled in a staggered manner through interface boundary conditions.

Findings

In order to demonstrate the developed coupling technique, various FSI examples were analyzed and presented. The coupling technique was useful to solve FSI problems.

Originality/value

To the best knowledge of the author, there have been few efforts to couple the two techniques to solve the fluid and flexible structure interaction problems.

Details

Engineering Computations, vol. 23 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 September 2018

Chengpei Liu and Junping Hu

This paper aims to study the performance of hydrostatic turntables by using fluid structure interaction (FSI) and thermal effect coupled model.

Abstract

Purpose

This paper aims to study the performance of hydrostatic turntables by using fluid structure interaction (FSI) and thermal effect coupled model.

Design/methodology/approach

A novel fluid-structure-thermal coupled model is set up to study the problem. The FSI technique and computational fluid dynamics (CFD) method are used by this new model, and the thermal effects are also considered. Hydrostatic turntables with different system parameters (oil supply pressure, oil recess depth and surface roughness) are studied under different working conditions (rotational speeds of turntable and exerted external loads). Performance characteristics obtained from this FSI-thermal coupled model and conventional model are presented and compared.

Findings

Theoretical predictions are in good agreement with the experimental data. The results of new FSI-thermal coupled model are more accurate than those of the old conventional model. To acquire better performance of the system, the novel FSI-thermal model becomes necessary for different hydrostatic turntable systems.

Originality/value

This developed model is a useful tool for studying hydrostatic turntables. To get an improved performance, a proper selection of design parameters of the system based on FSI-thermal model is essential.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 January 2010

R. Rossi and E. Oñate

The purpose of this paper is to analyse algorithms for fluidstructure interaction (FSI) from a purely algorithmic point of view.

Abstract

Purpose

The purpose of this paper is to analyse algorithms for fluidstructure interaction (FSI) from a purely algorithmic point of view.

Design/methodology/approach

First of all a 1D model problem is selected, for which both the fluid and structural behavior are represented through a minimum number of parameters. Different coupling algorithm and time integration schemes are then applied to the simplified model problem and their properties are discussed depending on the values assumed by the parameters. Both exact and approximate time integration schemes are considered in the same framework so to allow an assessment of the different sources of error.

Findings

The properties of staggered coupling schemes are confirmed. An insight on the convergence behavior of iterative coupling schemes is provided. A technique to improve such convergence is then discussed.

Research limitations/implications

All the results are proved for a given family of time integration schemes. The technique proposed can be applied to other families of time integration techniques, but some of the analytical results need to be reworked under this assumption.

Practical implications

The problems that are commonly encountered in FSI can be justified by simple arguments. It can also be shown that the limit at which trivial iterative schemes experience convergence difficulties is very close to that at which staggered schemes become unstable.

Originality/value

All the results shown are based on simple mathematics. The problems are presented so to be independent of the particular choice for the solution of the fluid flow.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 August 2017

Ming-min Liu, L.Z. Li and Jun Zhang

The purpose of this paper is to discuss a data interpolation method of curved surfaces from the point of dimension reduction and manifold learning.

Abstract

Purpose

The purpose of this paper is to discuss a data interpolation method of curved surfaces from the point of dimension reduction and manifold learning.

Design/methodology/approach

Instead of transmitting data of curved surfaces in 3D space directly, the method transmits data by unfolding 3D curved surfaces into 2D planes by manifold learning algorithms. The similarity between surface unfolding and manifold learning is discussed. Projection ability of several manifold learning algorithms is investigated to unfold curved surface. The algorithms’ efficiency and their influences on the accuracy of data transmission are investigated by three examples.

Findings

It is found that the data interpolations using manifold learning algorithms LLE, HLLE and LTSA are efficient and accurate.

Originality/value

The method can improve the accuracies of coupling data interpolation and fluid-structure interaction simulation involving curved surfaces.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 140