Search results

1 – 10 of 112
Article
Publication date: 5 January 2015

Adnan Maqsood and Tiauw Hiong Go

The purpose of this paper is to describe the research performed on flexible-wing micro air vehicle (MAV). Typical attributes associated with the aerodynamics of MAVs are low…

Abstract

Purpose

The purpose of this paper is to describe the research performed on flexible-wing micro air vehicle (MAV). Typical attributes associated with the aerodynamics of MAVs are low Reynolds number, low altitude flying environments and low aspect ratio platforms. These attributes give birth to several challenges such as poor aerodynamic performance, nonlinear lift patterns and reduced gust tolerance. Flexible-wing MAV is renowned for improved aerodynamic characteristics such as smooth flight in gusty conditions than its rigid-wing counterpart.

Design/methodology/approach

The wind-tunnel experiments are carried out for various configurations to determine the ways of further enhancing lift. The baseline geometric description for all MAVs includes 15-cm box dimension and an aspect ratio of 1. The experimental results of the baseline configuration are compared with other experimental results available in literature. After due validation, the effects of following parameters are quantized and compared with the rigid-wing counterpart: underlying skeleton; wing membrane extension; wing membrane relaxation; and wing membrane material (latex, silk, poly-vinyl chloride plastic sheet and nylon).

Findings

It is found that the skeleton layout significantly governs the lift characteristics. The effect of membrane extension and relaxation proved to be of little advantage. Latex sheets are found to be the best choice for membrane material. The aerodynamic assessment at low Reynolds number has demonstrated significant improvement of lift characteristics for flexible wings over rigid-wing counterparts.

Research limitations/implications

The results presented in this paper are based on wind-tunnel experimentation. Further experimentation through flight test may be needed to reveal the true aerodynamic performance under unsteady maneuvers.

Practical implications

The material properties vary significantly during fabrication. A technique to standardize the properties of flexible membranes is a missing link in literature and warrants further investigation.

Originality/value

This concept of flexible wing has shown high potential. The primary objective of this paper is to experimentally investigate ways of further enhancing the lift of flexible-wing MAVs by controlling flexibility passively. While various researchers have spent many years on developing the optimum wing frame for the flexible wing, research on different wing materials has been limited. This is the first paper of its kind covering all aspects of wing-frame design, material, effects of extension and relaxation on wing membrane.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 July 2021

Mustafa Serdar Genç, Hacımurat Demir, Mustafa Özden and Tuna Murat Bodur

The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various…

Abstract

Purpose

The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various Reynolds numbers.

Design/methodology/approach

In this paper, an experimental study on fluid-structure interaction of flexible membrane wings was presented at Reynolds numbers of 2.5 × 104, 5 × 104 and 7.5 × 104. In the experimental studies, flow visualization, velocity and deformation measurements for flexible membrane wings were performed by the smoke-wire technique, multichannel constant temperature anemometer and digital image correlation system, respectively. All experimental results were combined and fluid-structure interaction was discussed.

Findings

In the flexible wings with the higher aspect ratio, higher vibration modes were noticed because the leading-edge separation was dominant at lower angles of attack. As both Reynolds number and the aspect ratio increased, the maximum membrane deformations increased and the vibrations became visible, secondary vibration modes were observed with growing the leading-edge vortices at moderate angles of attack. Moreover, in the graphs of the spectral analysis of the membrane displacement and the velocity; the dominant frequencies coincided because of the interaction of the flow over the wings and the membrane deformations.

Originality/value

Unlike available literature, obtained results were presented comparatively using the sketches of the smoke-wire photographs with deformation measurement or turbulence statistics from the velocity measurements. In this study, fluid-structure interaction and leading-edge vortices of membrane wings were investigated in detail with increasing both Reynolds number and the aspect ratio.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 January 2022

Syam Narayanan S. and Asad Ahmed R.

The purpose of this study is to experimentally analyse the effect of flexible and stiffened membrane wings in the lift generation of flapping micro air vehicle (MAV).

Abstract

Purpose

The purpose of this study is to experimentally analyse the effect of flexible and stiffened membrane wings in the lift generation of flapping micro air vehicle (MAV).

Design/methodology/approach

This is analysed by the rectangle wing made up of polyethylene terephthalate sheets of 100 microns. MAV is tested for the free stream velocity of 2 m/s, 4 m/s, 6 m/s and k* of 0, 0.25, 1, 3, 8. This test is repeated for flapping MAV of the free flapping frequency of 2 Hz, 4 Hz, 6 Hz, 10 Hz and 12 Hz.

Findings

This study shows that the membrane wing with proper stiffeners can give better lift generation capacity than a flexible wing.

Research limitations/implications

Only a normal force component is measured, which is perpendicular to the longitudinal axis of the model.

Practical implications

In MAVs, the wing structures are thin and light, so the effect of fluid-structure interactions is important at low Reynold’s numbers. This data are useful for the MAV developments.

Originality/value

The effect of chord-wise flexibility in lift generation is the study of the effect of a flexible wing and rigid wing in MAV. It is analysed by the rectangle wing. The coefficient of normal force at different free stream conditions was analysed.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 October 2019

Syam Narayanan S., Asad Ahmed R., Jijo Philip Varghese, Gopinath S., Jedidiah Paulraj and Muthukumar M.

The purpose of this paper is to experimentally analyze the effect of wing shape of various insects of different species in a flapping micro aerial vehicle (MAV).

Abstract

Purpose

The purpose of this paper is to experimentally analyze the effect of wing shape of various insects of different species in a flapping micro aerial vehicle (MAV).

Design/methodology/approach

Six different wings are fabricated for the MAV configuration, which is restricted to the size of 15 cm length and width; all wings have different surface area and constant span length of 6 cm. The force is being measured with the help of a force-sensing resistor (FSR), and the coefficients of lift were calculated and compared.

Findings

This study shows that the wing “Tipula sp” has better value of lift than other insect wings, except for the negative angle of attacks. The wing “Aeshna multicolor” gives the better values of lift in negative angles of attack.

Practical implications

This paper lays the foundation for the development of flapping MAVs with the insect wings. This type of wing can be used for spying purpose in the military zone and also can be used to survey remote and dangerous places where humans cannot enter.

Originality/value

This paper covers all basic insect wing configurations of different species with exact mimics of the veins. As the experimental investigation was carried for different angle of attacks, velocities and flapping frequencies, this paper can be used as reference for future flapping wing MAV developers.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 May 2021

M.R. Saber and M.H. Djavareshkian

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of…

Abstract

Purpose

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of the aerodynamic forces and the structural stiffness (fluid-structural interaction), a geometrical deformation as the bump is created in the area where the shock occurs. This bump causes instead of compressive waves, a series of expansion waves that produce less drag and also improve the aerodynamic performance to be formed. The purpose of this paper is to reduce wave drag throughout the flight range. By using this method, we can be more effective than recent methods throughout the flight because if there is a shock, a bump will form in that area, and if the shock does not occur, the shape of the airfoil will not change.

Design/methodology/approach

In this simulation pressure-based procedure to solve the Navier-Stokes equation with collocated finite volume formulation has been developed. For this purpose, a high-resolution scheme for fluid and structure simulation in transonic flows with an arbitrary Lagrangian-Eulerian method is considered. To simulate Navier-Stokes equations large eddy simulation model for compressible flow is used.

Findings

A new concept has been defined to reduce the transonic flow drag. To reduce drag force and increase the performance of airfoil in transonic flow, the shell can be considered flexible in the area of shock on the airfoil surface. This method refers to the use of smart materials in the aircraft wing shell.

Originality/value

The value of the paper is to develop a new approach to improve the aerodynamic performance and reduce drag force and the efficiency of the method throughout the flight. It is noticeable that the new algorithm can detect the shock region automatically; this point was disregarded in the previous studies. It is hoped that this research will open a door to significantly enhance transonic airfoil performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 August 2022

Mostafa Arasteh, Yegane Azargoon and M.H. Djavareshkian

Ground effect is one of the important factors in the enhancement of wing aerodynamic performance. This study aims to investigate the aerodynamic forces and performance of a…

Abstract

Purpose

Ground effect is one of the important factors in the enhancement of wing aerodynamic performance. This study aims to investigate the aerodynamic forces and performance of a flapping wing with the bending deflection angel under the ground effect.

Design/methodology/approach

In this study, the wing and flapping mechanism were designed and manufactured based on the seagull flight and then assembled. It is worth noting that this mechanism is capable of wing bending in the upstroke flight as big birds. Finally, the model was examined at bending deflection angles of 0° and 107° and different distances from the surface, flapping frequencies and velocities in forward flight in a wind tunnel.

Findings

The results revealed that the aerodynamic performance of flapping wings in forward flight improved due to the ground effect. The effect of the bending deflection mechanism on lift generation was escalated when the flapping wing was close to the surface, where the maximum power loading occurred.

Practical implications

Flapping wings have many different applications, such as maintenance, traffic control, pollution monitoring, meteorology and high-risk operations. Unlike fixed-wing micro aerial vehicles, flapping wings are capable of operating in very-low Reynolds-number flow regimes. On the other hand, ground effect poses positive impacts on the provision of aerodynamic forces in the take-off process.

Originality/value

Bending deflection in the flapping motion and ground effect are two influential factors in the enhancement of the aerodynamic performance of flapping wings. The combined effects of these two factors have not been studied yet, which is addressed in this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 July 2023

Hatice Cansu Ayaz Ümütlü, Zeki Kiral and Ziya Haktan Karadeniz

The purpose of this study is to identify the possible relation between the vibration and the stall by using the vibration response of the airfoil. For this purpose, the root mean…

289

Abstract

Purpose

The purpose of this study is to identify the possible relation between the vibration and the stall by using the vibration response of the airfoil. For this purpose, the root mean square values of the acceleration signals are evaluated to demonstrate the compatibility between the stall angles and the vibration levels.

Design/methodology/approach

An experimental study is conducted on NACA 4415 airfoil at Reynolds numbers 69e3, 77e3 and 85e3. Experiments are performed from 0° to 25° of the angles of attack (AoA) for each Reynolds number condition. To observe the change of the vibration values at the stall region clearly, experiments are performed with the AoA ranging from 10° to 25° in 1° increments. Three acceleration sensors are used to obtain the vibration data.

Findings

The results show that the increase in the amplitude of the vibration is directly related to the decrease in lift. These findings indicate that this approach could be beneficial in detecting stall on airfoil-type structures.

Originality/value

This study proposes a new approach for detecting stall over the airfoil using the vibration data.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 June 2019

Mohammad Ghalambaz, S.A.M. Mehryan, Muneer A. Ismael, Ali Chamkha and D. Wen

The purpose of the present paper is to model a cavity, which is equally divided vertically by a thin, flexible membrane. The membranes are inevitable components of many…

Abstract

Purpose

The purpose of the present paper is to model a cavity, which is equally divided vertically by a thin, flexible membrane. The membranes are inevitable components of many engineering devices such as distillation systems and fuel cells. In the present study, a cavity which is equally divided vertically by a thin, flexible membrane is model using the fluid–structure interaction (FSI) associated with a moving grid approach.

Design/methodology/approach

The cavity is differentially heated by a sinusoidal time-varying temperature on the left vertical wall, while the right vertical wall is cooled isothermally. There is no thermal diffusion from the upper and lower boundaries. The finite-element Galerkin technique with the aid of an arbitrary Lagrangian–Eulerian procedure is followed in the numerical procedure. The governing equations are transformed into non-dimensional forms to generalize the solution.

Findings

The effects of four pertinent parameters are investigated, i.e., Rayleigh number (104 = Ra = 107), elasticity modulus (5 × 1012 = ET = 1016), Prandtl number (0.7 = Pr = 200) and temperature oscillation frequency (2p = f = 240p). The outcomes show that the temperature frequency does not induce a notable effect on the mean values of the Nusselt number and the deformation of the flexible membrane. The convective heat transfer and the stretching of the thin, flexible membrane become higher with a fluid of a higher Prandtl number or with a partition of a lower elasticity modulus.

Originality/value

The authors believe that the modeling of natural convection and heat transfer in a cavity with the deformable membrane and oscillating wall heating is a new subject and the results have not been published elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 October 2021

Ramesh P.S. and Muruga Lal Jeyan J.V.

This paper aims to evaluate the factors that dictate the design of a mini unmanned aircraft system (UAS).

Abstract

Purpose

This paper aims to evaluate the factors that dictate the design of a mini unmanned aircraft system (UAS).

Design/methodology/approach

This paper analyses various dimensions that dictate the design criteria for a mini UAS.

Findings

Compared to civil applications, design of mini UAS for military application is much more challenging owing to combat restrictions. Topics related to civil applications dominate research in the field of mini UAS, with over 60% of the papers accounting for civil applications. Limited published articles related to military applications are available. While 86% of the in-production mini UAS is primarily meant for military applications, only 9% of the research is devoted to military applications of mini UAS. Most mini UAS, although designed primarily for military applications, are also extensively used for various civil applications. Critical aspects that influence the employment of mini UAS in the tactical battlespace are area of interest, type of operation, type of operational tasks, terrain and network-centric operations. All these factors collectively impact the design of a mini UAS.

Practical implications

According to various studies, mini UAS is the fastest growing segment amongst all classes of UAS. This paper will provide vital inputs to the designers and manufacturers of mini UAS for both military and civil applications.

Social implications

Mini UAS are in the list of “must-have” for modern militaries across the world and is also growing exponentially in the civil domain. Therefore, it is important to understand the critical factors that dictate the design of mini UAS.

Originality/value

To the best of the authors’ knowledge, such an analysis is not available in the open domain.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 112