Search results

1 – 10 of over 1000
Article
Publication date: 8 September 2020

Faris Elghaish, Sandra Matarneh, Saeed Talebi, Michail Kagioglou, M. Reza Hosseini and Sepehr Abrishami

In this study, a critical literature review was utilized in order to provide a clear review of the relevant existing studies. The literature was analyzed using the meta-synthesis…

3827

Abstract

Purpose

In this study, a critical literature review was utilized in order to provide a clear review of the relevant existing studies. The literature was analyzed using the meta-synthesis technique to evaluate and integrate the findings in a single context.

Design/methodology/approach

Digital transformation in construction requires employing a wide range of various technologies. There is significant progress of research in adopting technologies such as unmanned aerial vehicles (UAVs), also known as drones, and immersive technologies in the construction industry over the last two decades. The purpose of this research is to assess the current status of employing UAVs and immersive technologies toward digitalizing the construction industry and highlighting the potential applications of these technologies, either individually or in combination and integration with each other.

Findings

The key findings are: (1) UAVs in conjunction with 4D building information modeling (BIM) can be used to assess the project progress and compliance checking of geometric design models, (2) immersive technologies can be used to enable controlling construction projects remotely, applying/checking end users’ requirements, construction education and team collaboration.

Practical implications

A detailed discussion around the application of UAVs and immersive technologies is provided. This is expected to support gaining an in-depth understanding of the practical applications of these technologies in the industry.

Originality/value

The review contributes a needed common basis for capturing progress made in UAVs and immersive technologies to date and assessing their impact on construction projects. Moreover, this paper opens a new horizon for novice researchers who will conduct research toward digitalized construction.

Details

Smart and Sustainable Built Environment, vol. 10 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 June 2021

Cezary Jerzy Szczepanski and Raja Purushothaman

The unmanned aerial vehicles (UAVs) entered into their development stage when different applications became real. One of those application areas is agriculture. Agriculture and…

279

Abstract

Purpose

The unmanned aerial vehicles (UAVs) entered into their development stage when different applications became real. One of those application areas is agriculture. Agriculture and transport currently follow infrastructure as the top industries in the world UAV market. The agricultural UAV can be acquired as a ready-made, built by its future user or UAV-as-a-service (UaaS) way. This paper aims to help the UAVs’ users to choose the right sensors for agricultural purposes. For that sake, the overview of the types and application areas of onboard sensors is presented and discussed. Some conclusions and suggestions should allow readers to choose the proper onboard sensors set and the right way of acquiring UAVs for their purposes related to the agricultural area.

Design/methodology/approach

The agricultural UAVs’ onboard specialised sensors have been analysed, described and evaluated from the farmer’s operational point of view. That analysis took into consideration the agricultural UAVs’ types of missions, sensor characteristics, basics of the data processing software and the whole set of UAV-sensor-software operational features. As the conclusions, the trends in the onboard agricultural UAVs’ sensors, their applications and operational characteristics have been presented.

Findings

Services performed by the UAVs for the agriculture businesses are the second in the UAV services world market, and their growth potential is around 17% compound annual growth rate in the next years. As one of the quickest developing businesses, it will attract substantial investments in all related areas. They will be done in the research, development and market deployment stages of that technology development. The authors can expect the new business models of the equipment manufacturers, service providers and sellers of the equipment, consumables and materials. The world agricultural UAVs’ services market will be divided between the following two main streams: the UAVs’ solutions dedicated to the individual farmers, systems devoted to the companies giving the specialised services to individual farmers, in the form of UaaS. It will be followed by the two directions of the agriculture UAV set optimisation, according to each of the above streams’ specific requirements and expectations. Solutions for the individual users will be more straightforward, universal and more comfortable to operate but less effective and less accurate than systems dedicated to the agricultural service provider. UAVs are becoming important universal machines in the agriculture business. They are the newcomers in that business but can change the processes performed traditionally. Such an example is spraying the crops. UAVs spray the rice fields in Japan on at least half of them every year. The other is defoliating the cotton leaves, which only in one China province takes place on a few million hectares every year (Kurkute et al., 2018). That trend will extend the range of applications of UAVs. The agricultural UAV will take over process after process from the traditional machines. The types and number of missions and activities performed by agricultural UAVs are growing. They are strictly connected with the development of hardware and software responsible for those missions’ performance. New onboard sensors are more reliable, have better parameters and their prices are reasonable. Onboard computers and data processing and transmitting methods allow for effective solutions of automatisation and autonomy of the agricultural UAVs’ operation. Automatisation and autonomous performance of the UAVs’ agricultural missions are the main directions of the future development of that technology. Changing the UAV payload allows for its application to a different mission. Changing the payload, like effectors, is quite simple and does not require any special training or tooling. It can be done in the field during the regular operation of the agricultural UAV. Changing the sensor set can be more complicated, because of the eventually required calibrating of those sensors. The same set of sensors gives a possibility to perform a relatively broad range of missions and tasks. The universal setup consists of the multispectral and RGB camera. The agricultural UAV equipped with such a set of sensors can effectively perform most of the crop monitoring missions. The agriculture business will accept the optimised sensor-computer-software UAV payload set, where its exploitation cost and operational simplicity are the critical optimisation factors. Simplicity, reliability and effectiveness of the everyday operation are the vital factors of accepting the agricultural UAV technology as a widespread working horse.

Research limitations/implications

Performed research studies have been done taking into consideration the factors influencing the real operational decisions made by the farmers or companies offering UAV services to them. In that case, e.g. the economical factors have been considered, which could prevail the technical complexity or measuring accuracy of the sensors. Then, drawn conclusions can be not accurate from the scientific research studies point of view, where the financing limits are not so strict.

Practical implications

The main goal of the paper is to present the reasons and factors influencing the “optimised” solution of the configuration of agricultural UAV onboard sensors set. It was done at the level useful for the readers understanding the end-users expectations and having a basic understanding of the sensors-related technologies. The paper should help them to configure an acceptable agricultural UAV for the specific missions or their servicing business.

Social implications

Understanding the technology implications related to the applying of agricultural UAVs into everyday service is one of the main limits of that technology market deployment. The conclusions should allow for avoiding the misunderstanding of the agricultural UAVs’ capabilities and then increasing their social acceptance. That acceptance by the farmers is the key factor for the effective introduction of that technology into the operation.

Originality/value

Presented conclusions have been drawn on the base of the extensive research of the existing literature and web pages, and also on the own experience in forestry and agriculture and other technical applications of the onboard sensors. The experience in practical aspects of the sensors choosing and application into several areas have been also used, e.g. manned and unmanned aeroplanes and helicopters applied in similar and other types of missions.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 November 2016

Alana Saulnier and Scott N. Thompson

The purpose of this paper is to explore institutional realities and public perceptions of police use of unmanned aerial vehicles (UAVs) in Canada in relation to each other…

1662

Abstract

Purpose

The purpose of this paper is to explore institutional realities and public perceptions of police use of unmanned aerial vehicles (UAVs) in Canada in relation to each other, drawing attention to areas of public misunderstanding and concern.

Design/methodology/approach

Public perceptions data are drawn from a national survey (n=3,045) of UAV use. Institutional realities data are drawn from content analyses of all Special Flight Operation Certificates issued by Transport Canada from 2007 to 2012 and flight logs of a regional service kept from 2011 to 2013. Officer interviews (n=2) also provide qualitative insights on institutional realities from this same regional service.

Findings

The data reveal disparities between institutional realities and public perceptions. Although federal, provincial and regional services currently use UAVs, awareness of police use of UAVs relative to traditionally piloted aircraft was low. Further, support for police use of UAVs was significantly lower than traditionally piloted craft; but, support also varied considerably across UAV applications, with the greatest opposition tied to tasks for which police do not report using UAVs and the greatest support tied to tasks for which police report using UAVs.

Originality/value

This research provides previously unknown descriptive data on the institutional realities of police use of UAVs in Canada, positioning that knowledge in relation to public perceptions of police use of the technology. The findings raise concerns over how UAVs may negatively shape police/civilian relations based on procedural justice literature which demonstrates that a lack of public support for the technology may affect the police more broadly.

Details

Policing: An International Journal of Police Strategies & Management, vol. 39 no. 4
Type: Research Article
ISSN: 1363-951X

Keywords

Article
Publication date: 20 January 2021

P.S. Ramesh and J.V. Muruga Lal Jeyan

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to…

Abstract

Purpose

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to operate from a runway. Therefore, the operating terrain plays an important role in the deployment and employment of the Mini UAS. However, there is limited published work in this area. The impact of terrain is more critical for military applications than civilian applications. The purpose of this paper is to explore the implications of various types of terrain on the employment and deployment of Mini UAS.

Design/methodology/approach

This paper explores the implications of various types of terrain on the employment and deployment of Mini UAS.

Findings

Mini UAS with field deployable requirements is often launched within the tactical battle area in case of military applications or in close proximity to the intended target area for civilian applications. Due to the size and weight of the Mini UAS, launch and recovery becomes an important factor to be considered. Rotary wing or fixed-wing vertical take-off and landing configuration UAS overcomes the limitations of Mini UAS and hence it is the preferred option. Impact of the terrain is significantly higher for military applications as compared to civil applications. Mountain terrain is the most challenging for Mini UAS operations.

Practical implications

This paper will help the designers configure the UAS as per the operating terrain.

Originality/value

Terrain affects the deployment and employment of Mini UAS and the capabilities of the system with respect to terrain in which it is expected to operate must be considered during the design of a Mini UAS. The paper will help the designers configure the UAS as per the operating terrain.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 13 September 2021

Mohammed Sulaiman, Mohammed Sulaiman, Hexu Liu, Mohamed Binalhaj, Maha Al-Kasasbeh and Osama Abudayyeh

Current facility management (FM) practices are inefficient and ineffective, partially because of missing information and communication issues. Information and communications…

762

Abstract

Purpose

Current facility management (FM) practices are inefficient and ineffective, partially because of missing information and communication issues. Information and communications technologies (ICT) are asserted to provide a promising solution for managing and operating facilities. However, the impact of ICT applications on current FM practices needs to be validated and the perception of FM professionals on ICT-based FM needs to be understood. Therefore, this paper aims to investigate the impacts and the perception of ICT application on FM practice and further develop an ICT-based integrated framework for smart FM practices.

Design/methodology/approach

To achieve the objective, the research starts with reviewing several promising ICT for FM, including building information modeling, geographic information systems, unmanned aerial vehicle and augmented reality. On this basis, a conceptional framework was synthesized in consideration of the benefits of each technology. A survey questionnaire to FM professionals was conducted to evaluate the proposed framework and identify the challenges of adopting ICT in the FM industry. Furthermore, return on investment and strength, weakness, opportunities and threats analysis have been used in this paper as evaluation methods for ICT industry adoption.

Findings

The survey results are validated by FM professionals for the future engagement of the integrated ICT applications. Also, the proposed framework can assist the decision-makers to have comprehensive information about facilities and systematize the communication among stakeholders.

Originality/value

This research provides an integrated framework for smart FM to improve decision-making, capitalizing on the ICT applications. Apart from this, the study sheds light on future research endeavors for other ICT applications.

Article
Publication date: 4 January 2019

Anna Maria Mazur and Roman Domanski

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The purpose…

Abstract

Purpose

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The purpose of this paper is to study the feasibility of applying the environmental-friendly energy source in an unmanned aerial vehicles (UAVs) propulsion system.

Design/methodology/approach

Currently, the majority of UAVs are still powered by conventional combustion engines. An electric propulsion system is most commonly found in civilian micro and mini UAVs. The UAV classification is reviewed in this study. This paper focuses mainly on application of electric propulsion systems in UAVs. Investigated hybrid energy systems consist of fuel cells, Li-ion batteries, super-capacitors and photovoltaic (PV) modules. Current applications of fuel cell systems in UAVs are also presented.

Findings

The conducted research shows that hybridization allows for better energy management and operation of every energy source onboard the UAV within its limits. The hybrid energy system design should be created to maximize system efficiency without compromising the performance of the aircraft.

Practical implications

The presented study highlights the reduction of the energy consumption, necessary to perform the mission and maximizing of the endurance with simultaneous decrease in emissions and noise level.

Originality/value

The conducted research studies the feasibility of implementing the environmental-friendly hybrid electric propulsion systems in UAVs that offers high efficiency, reliability, controllability, lack of thermal and noise signature, thus, providing quiet and clean drive with low vibration levels. This paper highlights the main challenges and current research on fuel cell in aviation and draws attention to fuel cell – electric system modeling, hybridization and energy management.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 2 May 2006

Olena Connor, Harry Pedersen, Nancy J. Cooke and Heather Pringle

The great success of unmanned aerial vehicles (UAVs) in performing near-real time tactical, reconnaissance, intelligence, surveillance and other various missions has attracted…

Abstract

The great success of unmanned aerial vehicles (UAVs) in performing near-real time tactical, reconnaissance, intelligence, surveillance and other various missions has attracted broad attention from military and civilian communities. A critical contribution to the increase and extension of UAV applications, resides in the separation of pilot and vehicle allowing the operator to avoid dangerous and harmful situations. However, this apparent benefit has the potential to lead to problems when the role of humans in remotely operating “unmanned” vehicles is not considered. Although, UAVs do not carry humans onboard, they do require human control and maintenance. To control UAVs, skilled and coordinated work of operators on the ground is required.

Details

Human Factors of Remotely Operated Vehicles
Type: Book
ISBN: 978-0-76231-247-4

Article
Publication date: 9 April 2021

Anjan Chamuah and Rajbeer Singh

The purpose of the paper is to describe the evolving regulatory structures of the civilian unmanned aerial vehicle (UAV) in India and Japan, not yet fully developed to regulate…

Abstract

Purpose

The purpose of the paper is to describe the evolving regulatory structures of the civilian unmanned aerial vehicle (UAV) in India and Japan, not yet fully developed to regulate the deployment of the UAV. India and Japan are at the forefront to overhaul the respective regulatory framework to address issues of accountability, responsibility and risks associated with the deployment of UAV technologies.

Design/methodology/approach

In-depth interviews are conducted both in Japan and India to gather primary data based on the snowball sampling method. The paper addresses questions such as what is the current scenario of civilian UAV deployment in India and Japan. What are the regulation structures for Civil UAV deployment and operation and how they differ in India and Japan? What are the key regulatory challenges for Civil UAV deployment in India? How regulation structure enables or inhibits the users and operators of Civil UAVs in India? What are mutual learnings concerning UAV regulations?

Findings

Findings reveal that the Indian regulations address issues of responsibility by imparting values of privacy, safety, autonomy and security; Japanese regulation prefers values of trust, responsibility, safety and ownership with more freedom to experiment.

Originality/value

The study on civilian UAV regulatory framework is a new and innovative work embedded by the dimensions of responsibility and accountability from a responsible innovation perspective. The work is a new contribution to innovation literature looked at from regulatory structures. Field visits to both Japan and India enrich the study to a new elevation.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 September 2021

Guanzheng Wang, Yinbo Xu, Zhihong Liu, Xin Xu, Xiangke Wang and Jiarun Yan

This paper aims to realize a fully distributed multi-UAV collision detection and avoidance based on deep reinforcement learning (DRL). To deal with the problem of low sample…

Abstract

Purpose

This paper aims to realize a fully distributed multi-UAV collision detection and avoidance based on deep reinforcement learning (DRL). To deal with the problem of low sample efficiency in DRL and speed up the training. To improve the applicability and reliability of the DRL-based approach in multi-UAV control problems.

Design/methodology/approach

In this paper, a fully distributed collision detection and avoidance approach for multi-UAV based on DRL is proposed. A method that integrates human experience into policy training via a human experience-based adviser is proposed. The authors propose a hybrid control method which combines the learning-based policy with traditional model-based control. Extensive experiments including simulations, real flights and comparative experiments are conducted to evaluate the performance of the approach.

Findings

A fully distributed multi-UAV collision detection and avoidance method based on DRL is realized. The reward curve shows that the training process when integrating human experience is significantly accelerated and the mean episode reward is higher than the pure DRL method. The experimental results show that the DRL method with human experience integration has a significant improvement than the pure DRL method for multi-UAV collision detection and avoidance. Moreover, the safer flight brought by the hybrid control method has also been validated.

Originality/value

The fully distributed architecture is suitable for large-scale unmanned aerial vehicle (UAV) swarms and real applications. The DRL method with human experience integration has significantly accelerated the training compared to the pure DRL method. The proposed hybrid control strategy makes up for the shortcomings of two-dimensional light detection and ranging and other puzzles in applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 February 2021

Young Dae Ko and Byung Duk Song

In the tourism industry, unmanned aerial vehicles (UAVs) can perform monitoring and patrol missions to protect assets and tourists at attractions such as coastal areas, canyons…

Abstract

Purpose

In the tourism industry, unmanned aerial vehicles (UAVs) can perform monitoring and patrol missions to protect assets and tourists at attractions such as coastal areas, canyons, national parks, etc. Such use of UAVs can improve safety and security of tourism attraction and facilitate tourism industry. However, there is a key issue regarding economic investment and efficient operation for actual system implementation. The purpose of this paper is to provide a guideline for supporting economic investment and the efficient operation of UAV system in the tourism industry.

Design/methodology/approach

Ideas and methodologies have been proposed to overcome the fundamental limitations of commercial UAVs. A mathematical optimization model is developed to determine the optimal number of UAVs to be purchased, and its operation schedules simultaneously.

Findings

Using proposed concept and methodology, UAVs can support long duration of missions. Economic system design as well as the operation schedule is derived with the hypothesis data in Kkot-Ji beach in Korea. The proposed methodology and approach is expected to have huge potential at many tourism attractions to achieve the safety and security of tourists.

Practical implications

The result of this study can facilitate practical use of UAVs in the tourism industry. Furthermore, it is applicable in many industries that need UAV systems such as national defence, agriculture, disaster management, etc.

Originality/value

The proposed study suggests a solution to handle fundamental weakness of UAVs and support long duration of missions. In addition, this study incorporates economic system design issue and operation issue simultaneously.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 33 no. 8
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of over 1000