Search results

1 – 10 of over 3000
Article
Publication date: 6 November 2023

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…

Abstract

Purpose

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.

Design/methodology/approach

The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.

Findings

The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.

Originality/value

The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Alireza Rahimi, Ali Dehghan Saee, Abbas Kasaeipoor and Emad Hasani Malekshah

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant…

1119

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant industrial applications.

Design/methodology/approach

Geometries of the enclosures have considerable influences on the heat transfer which will be important in energy consumption. The most useful geometries in engineering fields are treated in this literature, and their effects on the fluid flow and heat transfer are presented.

Findings

A great variety of geometries included with different physical and thermal boundary conditions, heat sources and fluid/nanofluid media are analyzed. Moreover, the results of different types of methods including experimental, analytical and numerical are obtained. Different natures of natural convection phenomenon including laminar, steady-state and transient, turbulent are covered. Overall, the present review enhances the insight of researchers into choosing the best geometry for thermal process.

Originality/value

A comprehensive review on the most practical geometries in the industrial application is performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2018

Ismail Arroub, Ahmed Bahlaoui, Abdelghani Raji, Mohammed Hasnaoui and Mohamed Naïmi

The purpose of this paper is to investigate numerically mixed convection of Al2O3-water nanofluids flowing through a horizontal ventilated cavity heated from below by a…

Abstract

Purpose

The purpose of this paper is to investigate numerically mixed convection of Al2O3-water nanofluids flowing through a horizontal ventilated cavity heated from below by a temperature varying sinusoidally along its lower wall. The simulations focus on the effects of different key parameters, such as Reynolds number (200 ≤ Re ≤ 5,000), nanoparticles’ concentration (0 ≤ ϕ ≤ 0.1) and phase shift of the heating temperature (0 ≤ γ ≤ π), on flow and thermal patterns and heat transfer performances.

Design/methodology/approach

The Navier–Stokes equations describing the nanofluid flow were discretized using a finite difference technique. The vorticity and energy equations were solved by the alternating direction implicit method. Values of the stream function were obtained by using the point successive over-relaxation method.

Findings

The simulations were performed for two modes of imposed external flow (injection and suction). The main findings are that the dynamical and thermal fields are affected by the parameters Re, ϕ, γ and the applied ventilation mode; the addition of nanoparticles leads to an improvement of heat transfer rate and an increase of mean temperature inside the enclosure; the heat exchange performance and the better cooling are more pronounced in suction mode; the phase shift of the heating temperature may lead to periodic solutions for weaker values of Re and contributes to an increase or a decrease of heat transfer depending on the value of ϕ and the convection regime.

Originality/value

To the best of the authors’ knowledge, the problem of mixed convection of a nanofluid inside a vented cavity using the injection or suction technics and submitted to non-uniform heating conditions has not been treated so far.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 February 2024

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho and Vicente Luiz Scalon

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on…

Abstract

Purpose

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on the flow and the natural convection heat transfer process over isothermal plates.

Design/methodology/approach

This work is an extension and finalization of previous studies of the leading author. The numerical methodology was proposed and experimentally validated in previous studies. Using OpenFOAM® and other free and open-source numerical-computational tools, three-dimensional numerical models were built to simulate the flow and the natural convection heat transfer process over isothermal corrugation plates with variable and constant heights.

Findings

The influence of different geometric arrangements of corrugated plates on the flow and natural convection heat transfer over isothermal plates is investigated. The influence of the height ratio parameter, as well as the resulting concave and convex profiles, on the parameters average Nusselt number, corrected average Nusselt number and convective thermal efficiency gain, is analyzed. It is shown that the total convective heat transfer and the convective thermal efficiency gain increase with the increase of the height ratio. The numerical results confirm previous findings about the predominant effects on the predominant impact of increasing the heat transfer area on the thermal efficiency gain in corrugated surfaces, in contrast to the adverse effects caused on the flow. In corrugations with heights resulting in concave profiles, the geometry with triangular corrugations presented the highest total convection heat transfer, followed by trapezoidal and rectangular. For arrangements with the same area, it was demonstrated that corrugations of constant and variable height are approximately equivalent in terms of natural convection heat transfer.

Practical implications

The results allowed a better understanding of the flow characteristics and the natural convection heat transfer process over isothermal plates with corrugations of variable height. The advantages of the surfaces studied in terms of increasing convective thermal efficiency were demonstrated, with the potential to be used in cooling systems exclusively by natural convection (or with reduced dependence on forced convection cooling systems), including in technological applications of microelectronics, robotics, internet of things (IoT), artificial intelligence, information technology, industry 4.0, etc.

Originality/value

To the best of the authors’ knowledge, the results presented are new in the scientific literature. Unlike previous studies conducted by the leading author, this analysis specifically analyzed the natural convection phenomenon over plates with variable-height corrugations. The obtained results will contribute to projects to improve and optimize natural convection cooling systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1994

Marcel Lacroix and Antoine Joyeux

A numerical study has been conducted for natural convection heattransfer for air around two vertically separated horizontal heated cylindersplaced inside an isothermal rectangular…

Abstract

A numerical study has been conducted for natural convection heat transfer for air around two vertically separated horizontal heated cylinders placed inside an isothermal rectangular enclosure having finite wall conductances. The interaction between convection in the fluid filled cavity and conduction in the walls surrounding the cavity is investigated. Results have been obtained for Rayleigh numbers (Ra) between 103 and 106, dimensionless wall thickness (W) between 0.5 and 1.375 and dimensionless wall‐fluid thermal conductivity ratio (α) between 0.01 and 5.0. The results indicate that wall heat conduction reduces the average temperature differences across the cavity, partially stabilizes the flow, and decreases natural convection heat transfer. The overall heat transfer coefficient for both cylinders is correlated with CRan for different W and α.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1995

Koki Kishinami, Hakaru Saito and Jun Suzuki

Combined free and forced laminar air convective heat transfer from avertical composite plate with isolated discontinuous surface heating elementshas been studied numerically and…

Abstract

Combined free and forced laminar air convective heat transfer from a vertical composite plate with isolated discontinuous surface heating elements has been studied numerically and experimentally. The problem has been simplified by neglecting heat conduction in unheated elements of the plate to accomplish a better understanding of the complicated combined/complicated convection problem. In this study, it is most important in explaining the heat transfer behaviour to clarify the interactions between buoyancy and inertia forces in the convective field and also the coupling effects of unheated elements upon the combined flow fields. Therefore, the temperature distributions of the wall surface and local Nusselt number, obtained by numerical calculations and experiments, have been discussed based on the various parameters associated with the present convection problem, i.e., Grashof number GrL, Reynolds number ReL, geometry factor D/L and stage number N. Heat transfer characteristics Nut/Re1/2L of this combined and coupled convection of air are presented as a function of a generalized coupling dimensionless number GrL/Re2L, and stage number N for certain values of the geometry factor of D/L.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2022

Damodara Priyanka, Pratibha Biswal and Tanmay Basak

This study aims to elucidate the role of curved walls in the presence of identical mass of porous bed with identical heating at a wall for two heating objectives: enhancement of…

Abstract

Purpose

This study aims to elucidate the role of curved walls in the presence of identical mass of porous bed with identical heating at a wall for two heating objectives: enhancement of heat transfer to fluid saturated porous beds and reduction of entropy production for thermal and flow irreversibilities.

Design/methodology/approach

Two heating configurations have been proposed: Case 1: isothermal heating at bottom straight wall with cold side curved walls and Case 2: isothermal heating at left straight wall with cold horizontal curved walls. Galerkin finite element method is used to obtain the streamfunctions and heatfunctions associated with local entropy generation terms.

Findings

The flow and thermal maps show significant variation from Case 1 to Case 2 arrangements. Case 1 configuration may be the optimal strategy as it offers larger heat transfer rates at larger values of Darcy number, Dam. However, Case 2 may be the optimal strategy as it provides moderate heat transfer rates involving savings on entropy production at larger values of Dam. On the other hand, at lower values of Dam (Dam ≤ 10−3), Case 1 or 2 exhibits almost similar heat transfer rates, while Case 1 is preferred for savings of entropy production.

Originality/value

The concave wall is found to be effective to enhance heat transfer rates to promote convection, while convex wall exhibits reduction of entropy production rate. Comparison between Case 1 and Case 2 heating strategies enlightens efficient heating strategies involving concave or convex walls for various values of Dam.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2020

Lei Wang, Yang Cai, Wei-Wei Wang, Run-Zhe Liu, Di Liu, Fu-Yun Zhao and Hanqing Wang

This paper aims to numerically investigate the magnetohydrodynamic (MHD) convection heat transfer of nanofluid inside a differentially heated enclosure with various fin…

Abstract

Purpose

This paper aims to numerically investigate the magnetohydrodynamic (MHD) convection heat transfer of nanofluid inside a differentially heated enclosure with various fin morphologies.

Design/methodology/approach

The fluid flow within the cavity was governed by N-S equations while it within porous medium was solved by the non-Darcy model, called the Darcy–Forchheimer model based on representative element-averaging method. Empirical correlations from experimental data are used to evaluate the effective thermal conductivity and dynamic viscosity. Relevant governing parameters, including thermal Rayleigh number (105-107), Hartmann number (0-50), Darcy number (10−6-10−1), thermal conductivity ratio of porous matrix (1-103), nanoparticles volume fraction (0-0.04) and topology designs of porous fins, are sensitively varied to identify their effects and roles on the fluid flow and heat transfer. Particularly, heatlines are used to investigate the mechanism of heat transport.

Findings

Numerical results demonstrate that the predictions of average Nusselt number are augmented by using more porous fins with high permeability, and this effect becomes opposite in tiny Darcy numbers. Particularly, for high Darcy and Rayleigh numbers, the shortest fins could achieve the best performance of heat transfer. In addition, the prediction of average Nusselt number reduces with an increase in Hartmann numbers. An optimal nanoparticles concentration also exists to maximize heat transfer enhancement. Finally, numerical correlations for the average Nusselt number were proposed as functions of these governing parameters.

Practical implications

Present work could benefit the thermal design of electronic cooling and thermal carriers in nanofluid engineering.

Social implications

Present work could benefit the thermal design of electronic cooling and thermal carriers in nanofluid engineering. In addition, optimum thermal removals could enhance the lifetime of electronics, therefore reducing the cost of energy and materials.

Originality/value

To the best knowledge of authors, there are not any studies considering the synergetic effects of porous fins on MHD convection of nanofluids. Present work could benefit the thermal design of electronic cooling and thermal carriers in nanofluid engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2018

Ammar I. Alsabery, Taher Armaghani, Ali J. Chamkha, Muhammad Adil Sadiq and Ishak Hashim

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The…

Abstract

Purpose

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Design/methodology/approach

The current work investigates the problem of mixed convection heat transfer in a double lid-driven square cavity in the presence of magnetic field. The used cavity is filled with water-Al2O3 nanofluid based on Buongiorno’s two-phase model. The bottom horizontal wall is maintained at a constant high temperature and moves to the left/right, while the top horizontal wall is maintained at a constant low temperature and moves to the right/left. The left and right vertical walls are thermally insulated. The dimensionless governing equations are solved numerically using the Galerkin weighted residual finite element method.

Findings

The obtained results show that the heat transfer rate enhances with an increment of Reynolds number or a reduction of Hartmann number. In addition, effects of thermophoresis and Brownian motion play a significant role in the growth of convection heat transfer.

Originality/value

According to above-mentioned studies and to the authors’ best knowledge, there has no study reported the MHD mixed convection heat transfer in a double lid-driven cavity using the two-phase nanofluid model. Thus, the authors of the present study believe that this work is valuable. Therefore, the aim of this comprehensive numerical study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 3000