Search results

1 – 10 of 775
Article
Publication date: 4 September 2017

Shan Cao, Faqing He and Jinwei Gao

Important reserves of oil and gas, which are left to be discovered and produced, are mainly concentrated in challenging locations and under severe conditions such as high pressure…

Abstract

Purpose

Important reserves of oil and gas, which are left to be discovered and produced, are mainly concentrated in challenging locations and under severe conditions such as high pressure (HP)/high temperature (HT). The presence of aggressive environments including H2S, CO2 and chlorides plus HP/HT causes a series of corrosion problems, which cost the oil industry billions of dollars a year. Thus, there is an increasing challenge for tubes (i.e. oil country tubular goods, for short, OCTG) used in producing oil and gas. The purpose of this study is to summarize different kinds of corrosion problems and their mitigation, to more efficiently protect OCTG from corrosion.

Design/methodology/approach

To effectively select proper mitigation methods, the mechanism of corrosion must be understood, which can be classified into four categories: sweet corrosion, sour corrosion, galvanic corrosion and microbiologically induced corrosion. Also, the effects of environmental and material factors on the corrosion rate are presented. Subsequently, current technology of mitigating these corrosion problems has been discussed, including the development of materials, application of chemical inhibitors and application of protective layers.

Findings

It is stressed that limits exist for each individual mitigation method; therefore, a careful balance between economic life of OCTG and safety in operation is required.

Originality/value

The main purpose of this essay is to give a brief review and detailed introduction and analysis about those technologies.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 January 2013

Shun'an Cao, Jiayuan Hu, Jianli Xie, Qinqin Liang and Li Yin

The purpose of this paper is to set out a study of the film‐forming characteristics of octadecylamine (ODA), estimate the feasibility of shutdown protection using ODA at high…

Abstract

Purpose

The purpose of this paper is to set out a study of the film‐forming characteristics of octadecylamine (ODA), estimate the feasibility of shutdown protection using ODA at high temperatures, and determine the optimum process condition of shutdown protection for units under full load if ODA has a good film‐forming effect at high temperatures.

Design/methodology/approach

An autoclave was used to simulate the water‐vapor environments at 350‐560°C in the water‐steam system of power plants. The decomposition test of ODA was investigated and the ODA film‐forming characteristics were studied for furnace tube materials used in gas‐fired power plants.

Findings

Results showed that ODA had a decomposition equilibrium and the decomposition products did not contain harmful organic substances such as low molecular organic acids. ODA would form a satisfactory protective film in the range of 350‐560°C with the best film at 480°C. The protection effect of the film formed by ODA at 560°C was much stronger than was that of its oxide film, which showed the feasibility of shutdown protection using ODA for gas‐fired power plants operating under full load. The optimal conditions of shutdown protection under full load were as follows: the temperature was 560°C, the concentration of ODA was 80 mg/L, the pH was 9.5 and the exposure time was 2 h. From the experimental results of X‐ray photoelectron spectroscopy, it was known that the surface film on the specimens was composed of a compound of ferroferric oxide and ODA, and the film‐forming mechanism was chemical adsorption between N in the ODA and Fe.

Originality/value

It was found that ODA has a good film‐forming effect at high temperatures and it is practicable to implement shutdown protection for base‐load units. The research results can provide theoretical guidelines for shutdown protection of gas‐fired power plants.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 February 2022

Jiabao Pan, Huaibiao Wu, Ao Wang, Qingwen Dai and Xiaolei Wang

This paper aims to investigate the influence of high-temperature thermal action on grease performance from the angle of film-forming performance.

132

Abstract

Purpose

This paper aims to investigate the influence of high-temperature thermal action on grease performance from the angle of film-forming performance.

Design/methodology/approach

A static thermal aging method was used to prepare high-temperature thermal grease samples after high-temperature thermal action. On the basis of optical interference technology, the film-forming characteristics of fresh grease samples and the grease samples after high-temperature thermal action under variable speed and fixed speed conditions were explored.

Findings

The decrease in the structural entanglement performance of the grease after short-term high-temperature thermal action makes its film-forming performance better. The mechanism is that the lubricating grease soap fiber entanglement is reduced. Although the continuous high-temperature thermal action can make the grease film-forming performance better, its mechanism is that the soap fiber structure caused by high-temperature thermal action is damaged and is easy to be cut off under the action of shear.

Originality/value

The effect of structural system change on its film formation performance was discussed in combination with the change in grease structure characteristics, and the mechanism of action was revealed.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 October 2019

Jia-Bo Zhang, Yang Yang, Xiao-Hui Zhang, Jia-Liang Guan, Li-Yan Zheng and Guang Li

The purpose of this study is to investigate the characteristic and function of oxide film formed on grinding wheel in electrolytic in-process dressing (ELID) precision grinding…

Abstract

Purpose

The purpose of this study is to investigate the characteristic and function of oxide film formed on grinding wheel in electrolytic in-process dressing (ELID) precision grinding and improve the quality of ELID grinding.

Design/methodology/approach

Dynamic film forming experiments were carried out with a simulation device close to the actual processing conditions. Then, the ELID grinding experiments of bearing rings were performed using grinding wheels with good film forming effect. The experiment was designed by quadratic regression general rotation combination method. The influence of grinding depth, electrolytic voltage, duty cycle and grinding wheel linear speed on grinding effect is analyzed.

Findings

A mathematical model for the formation rate of oxide film was established. The experiments show that the composition of grinding wheel and grinding fluid, as well as the electrical parameters, influence the film forming effect. Thus, the oxide film plays an important role in ELID grinding.

Originality/value

This study provides a reference for the design and selection of grinding wheel and grinding fluid and the setting of process parameters in ELID grinding.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2023

Yuan Liu, Chang Dong, Xianzhang Wang, Xiao Sang, Liran Ma, Xuefeng Xu and Yu Tian

The purpose of this study is to reveal the underlying mechanism in film formation of oil-in-water (O/W) emulsion.

Abstract

Purpose

The purpose of this study is to reveal the underlying mechanism in film formation of oil-in-water (O/W) emulsion.

Design/methodology/approach

This study focuses on the film forming characteristics of O/W emulsion between the surface of a steel ball and a glass disc coated with chromium. The lubricant film thicknesses of O/W emulsion with various mechanical stirring strength were discussed, which were observed by technique of relative optical interference intensity.

Findings

The authors directly observed the oil pool in the contact area, finding the size of oil pool was closely related to the film-forming ability of emulsion. Enrichment phenomenon occurs in oil pool, which was caused by phase inversion. Further investigations revealed that the emulsion is stable with strong stirring strength, resulting in a smaller oil pool size and worse film forming ability.

Originality/value

With the wide usage of O/W emulsion in both biological and industrial systems, the ability of emulsion film formation is considered as an important factor to evaluate the lubrication effectiveness.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0354/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 March 2012

Zhiping Zhu, Hui Zhang, Linlin Jing, Shuhua Xiong and Zhenghui Tan

The purpose of this paper is to research the morphologies of the oxide films formed on the internal surfaces of water wall tubes in a 600 MW furnace at 300° while using CPT, CT…

1508

Abstract

Purpose

The purpose of this paper is to research the morphologies of the oxide films formed on the internal surfaces of water wall tubes in a 600 MW furnace at 300° while using CPT, CT, AVT(R) and AVT(O) water chemistry. In these water chemistry conditions, a layer of oxide film spontaneously forms in the furnace wall which could prevent corrosions in boiler water directly contact with the inner tube and reduce the probability of tube perforation.

Design/methodology/approach

The different morphologies, specific functions and distribution in the oxide film were identified by electrochemical workstation, XRD, SEM and EDAX.

Findings

It is concluded that metal surface was rugged and had deep corrosion in CPT. Ions penetrated into the oxides of large particles with gaps and intergranular corrosion occurred in CT conditions. In AVT(R), the oxide film uniformly covered on the metal surface played a protective role, but could be easily washed away by solution. The oxide film formed in AVT(O) was similar to AVT(R), but the difference is that large solid particles of Fe2O3 cover the outermost oxide film, which prevents the oxide film from being taken away by the flowing solution. In consequence, the degree of corrosion sustained by the tube walls is lowest in the case of AVT(O).

Originality/value

The results can provide reference for reducing the high temperature corrosion of metal in the actual operation.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2003

Pradeep Shende, Shrikant Dabhade and Milind Kulkarni

Polyesteramide resin based on the condensation of hydroxyethylamide derivatives of fatty acids of soybean {N, N′‐bis(2 hydroxyethyl)soybean amide} and various dibasic acid and…

Abstract

Polyesteramide resin based on the condensation of hydroxyethylamide derivatives of fatty acids of soybean {N, N′‐bis(2 hydroxyethyl)soybean amide} and various dibasic acid and anhydride were synthesized. Physico‐chemical characteristics and film forming properties of these resins were determined to prove its suitability as a vehicle for surface coatings. The study reveals that resins can be used for the baked type of finishes.

Details

Pigment & Resin Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 1950

A.H. STUART

The friction characteristics of dry films formed on the surface of metals by natural or artificial means has been investigated in some detail, both in this country and in the…

Abstract

The friction characteristics of dry films formed on the surface of metals by natural or artificial means has been investigated in some detail, both in this country and in the U.S.A. for some years past. The work is of more than academic interest and has been stimulated by an ever increasing number of industrial problems which call for dry film lubrication in their solution.

Details

Industrial Lubrication and Tribology, vol. 2 no. 5
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 October 2005

S.P. Dubey, G.K. Sharma, K.S. Shishodia and G.S. Sekhon

Oil‐in‐water (O/W) emulsion has been used in industrial rolling mills for many decades, but its lubrication mechanism is still not adequately understood. There is a need to…

1808

Abstract

Purpose

Oil‐in‐water (O/W) emulsion has been used in industrial rolling mills for many decades, but its lubrication mechanism is still not adequately understood. There is a need to understand the role of chemical ingredients and emulsifier in lubrication and tribological characteristics of rolling oil. With this purpose, the authors selected three commercially available O/W emulsions of different generations and of known industrial performance. The aim is to understand the lubrication mechanism of these rolling oils and to correlate the laboratory findings with that of industrial rolling mills.

Design/methodology/approach

The lubrication mechanism has been studied with the help of an ultra thin film interferometry EHD test rig, an advanced experimental rolling mill and a Coulter LS 230 instrument. Film thickness, rolling parameters and droplet size were measured. The coefficient of friction was computed with the help of the measured values of rolling parameters. Emulsion stability and saponification value (SAP) of the selected emulsions were also determined. The results of film thickness, rolling parameters and droplet size have been presented. The lubrication mechanism of the emulsions has been explained on the basis of film thickness, droplet size, emulsion stability, SAP value and coefficient of friction.

Findings

Results of the present study reveal that chemistry of O/W emulsions plays an important role in their film forming and tribological behavior. Rolling emulsions of relatively low stability, higher droplet size and high SAP value are found to provide better lubrication and lower coefficient of friction. The results of the present study correlate well with the actual industrial experience except those obtained on EHD test rig.

Research limitations/implications

Coulter LS 230 instrument was available with M/s LUBRIZOL CORP., USA. Only limited study on droplet size was carried. Although the study carried out has given good information but it would have been more practical if the emulsion samples taken from the experimental mill stand would have been studied for droplet size.

Practical implications

From understanding point of view of lubrication mechanism of O/W emulsion, it will be useful for oil technologists, tribologists and rolling mill users.

Originality/value

The study is original in nature and gives information on lubrication mechanism of O/W emulsions in steel cold rolling of steel strips.

Details

Industrial Lubrication and Tribology, vol. 57 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 775