Search results

1 – 10 of 119
Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 May 2024

Cesar Omar Balderrama-Armendariz, Sergio Esteban Arbelaez-Rios, Santos-Adriana Martel-Estrada, Aide Aracely Maldonado-Macias, Eric MacDonald and Julian I. Aguilar-Duque

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder…

Abstract

Purpose

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder after multiple cycles in the laser system.

Design/methodology/approach

The experimental process for evaluating the reuse of SLS powders in a subsequent binder jetting process consists of four phases: powder characterization, bonding analysis, mixture testing and mixture characteristics. Analyses were carried out using techniques such as Fourier Transform Infrared Spectroscopy, scanning electron microscopy, thermogravimetric analysis and stress–strain tests for tension and compression. The surface roughness, color, hardness and density of the new mixture were also determined to find physical characteristics. A Taguchi design L8 was used to search for a mixture with the best mechanical strength.

Findings

The results indicated that the integration of waste powder PA12 with calcium sulfate hemihydrate (CSH) generates appropriate particle distribution with rounded particles of PA12 that improve powder flowability. The micropores observed with less than 60 µm, facilitated binder and infiltrant penetration on 3D parts. The 60/40 (CSH-PA12) mixture with epoxy resin postprocessing was found to be the best-bonded mixture in mechanical testing, rugosity and hardness results. The new CSH-PA12 mixture resulted lighter and stronger than the CSH powder commonly used in binder jetting technology.

Originality/value

This study adds value to the polymer powder bed fusion process by using its waste in a circular process. The novel reuse of PA12 waste in an established process was achieved in an accessible and economical manner.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 February 2024

Sadaf Razzaq and Naeem Akhtar

Examining emotional solidarity that drives tourists’ nostalgia has received significant attention, offering valuable insights that can aid in the selection of a travel…

Abstract

Purpose

Examining emotional solidarity that drives tourists’ nostalgia has received significant attention, offering valuable insights that can aid in the selection of a travel destination. However, tourists’ nostalgia, along with its antecedents—perceived safety risk and emotional solidarity, has gained less attention within the setting of Pakistan. Therefore, this research has been carried out and validated a research framework using the stimulus-organism-response model to investigate the links between perceived safety risk, emotional solidarity—welcoming nature, emotional closeness, sympathetic understanding, perceived nostalgia, and destination advocacy intentions. In addition, this model employed destination attachment—place identity and place dependence—as a boundary condition on the relationships between emotional solidarity and advocacy intentions.

Design/methodology/approach

This study collected 545 responses through two methods: offline distribution of print copies of the questionnaire and online surveys from domestic tourists who visited scenic destinations last year. Structural equation modeling (SEM) was performed using AMOS 26, and the PROCESS macro was conducted using IBM SPSS 28.

Findings

The findings highlighted that perceived safety risk negatively influences emotional solidarity—welcoming nature, emotional closeness, sympathetic understanding—, resulting in a positive effect on perceived nostalgia. Furthermore, tourists’ perceived nostalgia positively triggers advocacy intentions. The findings also confirmed the boundary conditions of destination attachment—place identity and place dependence—on the association between emotional solidarity and perceived nostalgia.

Practical implications

Three major practical implications of these findings: First, ensuring visitor safety with smart security measures, digital tools for quick response, and local community involvement. Second, highlighting local markets, art, and architecture to enrich cultural experiences and promote accessibility and diversity. Finally, using marketing to generate nostalgic experiences through local collaborations, professional storytelling, and engaging social media content to build emotional ties and curiosity.

Originality/value

In terms of originality, this is pioneering research intended at developing and validating the model in the context of Pakistani destinations. Furthermore, this marks the initial step in examining the proposed relationships between perceived safety risk and emotional solidarity in fostering tourists' perceived nostalgia, ultimately leading to a strong desire to advocate for the destination.

Details

Journal of Hospitality and Tourism Insights, vol. 7 no. 2
Type: Research Article
ISSN: 2514-9792

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2024

Hubannur Seremet and Nazim Babacan

This paper aims to examine the static compression characteristics of cell topologies in body-centered cubic with vertical struts (BCCZ) and face-centered cubic with vertical…

Abstract

Purpose

This paper aims to examine the static compression characteristics of cell topologies in body-centered cubic with vertical struts (BCCZ) and face-centered cubic with vertical struts (FCCZ) along with novel BCCZZ and FCCZZ lattice structures.

Design/methodology/approach

The newly developed structures were obtained by adding extra interior vertical struts into the BCCZ and FCCZ configurations. The samples, composed of the AlSi10Mg alloy, were fabricated using the selective laser melting (SLM) additive manufacturing technique. The specific compressive strength and failure behavior of the manufactured lattice structures were investigated, and comparative analysis among them was done.

Findings

The results revealed that the specific strength of BCCZZ and FCCZZ samples with 0.5 mm strut diameter exhibited approximately a 23% and 18% increase, respectively, compared with the BCCZ and FCCZ samples with identical strut diameters. Moreover, finite element analysis was carried out to simulate the compressive response of the lattice structures, which could be used to predict their strength and collapse mode. The findings showed that while the local buckling of lattice cells is the major failure mode, the samples subsequently collapsed along a diagonal shear band.

Originality/value

An original and systematic investigation was conducted to explore the compression properties of newly fabricated lattice structures using SLM. The results revealed that the novel FCCZZ and BCCZZ structures were found to possess significant potential for load-bearing applications.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 2024

Fatemeh Shaker, Arash Shahin and Saeed Jahanyan

This paper aims to simulate vital corrective actions (CAs) affecting system availability through a system dynamics approach based on the results obtained by analyzing the causal…

Abstract

Purpose

This paper aims to simulate vital corrective actions (CAs) affecting system availability through a system dynamics approach based on the results obtained by analyzing the causal relationships among failure modes and effects analysis elements.

Design/methodology/approach

A stock and flow diagram has been developed to simulate system behaviors during a timeframe. Some improvement scenarios regarding the most necessary CAs according to their strategic priority and the possibility of eliminating root causes of critical failure modes in a roller-transmission system have been simulated and analyzed to choose the most effective one(s) for the system availability. The proposed approach has been examined in a steel-manufacturing company.

Findings

Results indicated the most effective CAs to remove or diminish critical failure causes that led to the less reliability of the system. It illustrated the impacts of the selected CAs on eliminating or decreasing root causes of the critical failure modes, lessening the system’s failure rate and increasing the system availability more effectively.

Research limitations/implications

Results allow managers and decision-makers to consider different maintenance scenarios without wasting time and more cost, choosing the most appropriate option according to system conditions.

Originality/value

This study innovation would be the dynamic analysis of interactions among failure modes, effects and causes over time to predict the system behavior and improve availability by choosing the most effective CAs through improvement scenario simulation via VENSIM software.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 2 May 2024

Tudor George Alexandru, Diana Popescu, Stochioiu Constantin and Florin Baciu

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand…

Abstract

Purpose

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand orthoses. These orthoses were 3D printed flat, heated and molded to fit the patient’s hand. The advantages of such an approach include reduced production time and cost.

Design/methodology/approach

The study used both experimental and numerical methods to analyze the thermoforming process of PLA parts. Thermal and mechanical characteristics were determined at different temperatures and infill densities. An equivalent material model that considers infill within a print is proposed. Its practical use was proven using a coupled finite-element analysis model. The simulation strategy enabled a comparative analysis of the thermoforming behavior of orthoses with two designs by considering the combined impact of natural convection cooling and imposed structural loads.

Findings

The experimental results indicated that at 27°C and 35°C, the tensile specimens exhibited brittle failure irrespective of the infill density, whereas ductile behavior was observed at 45°C, 50°C and 55°C. The thermal conductivity of the material was found to be linearly related to the temperature of the specimen. Orthoses with circular open pockets required more time to complete the thermoforming process than those with hexagonal pockets. Hexagonal cutouts have a lower peak stress owing to the reduced reaction forces, resulting in a smoother thermoforming process.

Originality/value

This study contributes to the existing literature by specifically focusing on the thermoforming process of 3D-printed parts made from PLA. Experimental tests were conducted to gather thermal and mechanical data on specimens with two infill densities, and a finite-element model was developed to address the thermoforming process. These findings were applied to a comparative analysis of 3D-printed thermoformed wrist-hand orthoses that included open pockets with different designs, demonstrating the practical implications of this study’s outcomes.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 March 2024

Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

56

Abstract

Purpose

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

Design/methodology/approach

The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.

Findings

The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.

Social implications

This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2024

Baixi Chen, Weining Mao, Yangsheng Lin, Wenqian Ma and Nan Hu

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and…

Abstract

Purpose

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and environmental factors during manufacturing, the FDM parts inevitably demonstrated uncertainty in properties and performance. This study aims to identify the stochastic constitutive behaviors of FDM-fabricated polylactic acid (PLA) tensile specimens induced by the manufacturing process.

Design/methodology/approach

By conducting the tensile test, the effects of the printing machine selection and three major manufacturing parameters (i.e., printing speed S, nozzle temperature T and layer thickness t) on the stochastic constitutive behaviors were investigated. The influence of the loading rate was also explained. In addition, the data-driven models were established to quantify and optimize the uncertain mechanical behaviors of FDM-based tensile specimens under various printing parameters.

Findings

As indicated by the results, the uncertain behaviors of the stiffness and strength of the PLA tensile specimens were dominated by the printing speed and nozzle temperature, respectively. The manufacturing-induced stochastic constitutive behaviors could be accurately captured by the developed data-driven model with the R2 over 0.98 on the testing dataset. The optimal parameters obtained from the data-driven framework were T = 231.3595 °C, S = 40.3179 mm/min and t = 0.2343 mm, which were in good agreement with the experiments.

Practical implications

The developed data-driven models can also be integrated into the design and characterization of parts fabricated by extrusion and other additive manufacturing technologies.

Originality/value

Stochastic behaviors of additively manufactured products were revealed by considering extensive manufacturing factors. The data-driven models were proposed to facilitate the description and optimization of the FDM products and control their quality.

Article
Publication date: 2 May 2024

Xin Fan, Yongshou Liu, Zongyi Gu and Qin Yao

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional…

Abstract

Purpose

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional methods struggle to conduct a reliability analysis. Therefore, this paper proposes a reliability analysis method aimed at enhancing the efficiency of rare event analysis, using the widely recognized Relevant Vector Machine (RVM).

Design/methodology/approach

Drawing from the principles of importance sampling (IS), this paper employs Harris Hawks Optimization (HHO) to ascertain the optimal design point. This approach not only guarantees precision but also facilitates the RVM in approximating the limit state surface. When the U learning function, designed for Kriging, is applied to RVM, it results in sample clustering in the design of experiment (DoE). Therefore, this paper proposes a FU learning function, which is more suitable for RVM.

Findings

Three numerical examples and two engineering problem demonstrate the effectiveness of the proposed method.

Originality/value

By employing the HHO algorithm, this paper innovatively applies RVM in IS reliability analysis, proposing a novel method termed RVM-HIS. The RVM-HIS demonstrates exceptional computational efficiency, making it eminently suitable for rare events reliability analysis with implicit performance function. Moreover, the computational efficiency of RVM-HIS has been significantly enhanced through the improvement of the U learning function.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 119