Search results

1 – 10 of over 11000
Article
Publication date: 20 August 2018

Dharini Ramachandran and Parvathi Ramasubramanian

“What’s happening?” around you can be spread through the very pronounced social media to everybody. It provides a powerful platform that brings to light the latest news…

Abstract

Purpose

“What’s happening?” around you can be spread through the very pronounced social media to everybody. It provides a powerful platform that brings to light the latest news, trends and happenings around the world in “near instant” time. Microblog is a popular Web service that enables users to post small pieces of digital content, such as text, picture, video and link to external resource. The raw data from microblog prove indispensable in extracting information from it, offering a way to single out the physical events and popular topics prevalent in social media. This study aims to present and review the varied methods carried out for event detection from microblogs. An event is an activity or action with a clear finite duration in which the target entity plays a key role. Event detection helps in the timely understanding of people’s opinion and actual condition of the detected events.

Design/methodology/approach

This paper presents a study of various approaches adopted for event detection from microblogs. The approaches are reviewed according to the techniques used, applications and the element detected (event or topic).

Findings

Various ideas explored, important observations inferred, corresponding outcomes and assessment of results from those approaches are discussed.

Originality/value

The approaches and techniques for event detection are studied in two categories: first, based on the kind of event being detected (physical occurrence or emerging/popular topic) and second, within each category, the approaches further categorized into supervised- and unsupervised-based techniques.

Article
Publication date: 13 June 2016

Muskan Garg and Mukesh Kumar

Social Media is one of the largest platforms to voluntarily communicate thoughts. With increase in multimedia data on social networking websites, information about human…

1404

Abstract

Purpose

Social Media is one of the largest platforms to voluntarily communicate thoughts. With increase in multimedia data on social networking websites, information about human behaviour is increasing. This user-generated data are present on the internet in different modalities including text, images, audio, video, gesture, etc. The purpose of this paper is to consider multiple variables for event detection and analysis including weather data, temporal data, geo-location data, traffic data, weekday’s data, etc.

Design/methodology/approach

In this paper, evolution of different approaches have been studied and explored for multivariate event analysis of uncertain social media data.

Findings

Based on burst of outbreak information from social media including natural disasters, contagious disease spread, etc. can be controlled. This can be path breaking input for instant emergency management resources. This has received much attention from academic researchers and practitioners to study the latent patterns for event detection from social media signals.

Originality/value

This paper provides useful insights into existing methodologies and recommendations for future attempts in this area of research. An overview of architecture of event analysis and statistical approaches are used to determine the events in social media which need attention.

Details

Online Information Review, vol. 40 no. 3
Type: Research Article
ISSN: 1468-4527

Keywords

Article
Publication date: 14 August 2017

Wei Xu, Lingyu Liu and Wei Shang

Timely detection of emergency events and effective tracking of corresponding public opinions are critical in emergency management. As media are immediate sources of…

Abstract

Purpose

Timely detection of emergency events and effective tracking of corresponding public opinions are critical in emergency management. As media are immediate sources of information on emergencies, the purpose of this paper is to propose cross-media analytics to detect and track emergency events and provide decision support for government and emergency management departments.

Design/methodology/approach

In this paper, a novel emergency event detection and opinion mining method is proposed for emergency management using cross-media analytics. In the proposed approach, an event detection module is constructed to discover emergency events based on cross-media analytics, and after the detected event is confirmed as an emergency event, an opinion mining module is used to analyze public sentiments and then generate public sentiment time series for early warning via a semantic expansion technique.

Findings

Empirical results indicate that a specific emergency can be detected and that public opinion can be tracked effectively and efficiently using cross-media analytics. In addition, the proposed system can be used for decision support and real-time response for government and emergency management departments.

Research limitations/implications

This paper takes full advantage of cross-media information and proposes novel emergency event detection and opinion mining methods for emergency management using cross-media analytics. The empirical analysis results illustrate the efficiency of the proposed method.

Practical implications

The proposed method can be applied for detection of emergency events and tracking of public opinions for emergency decision support and governmental real-time response.

Originality/value

This research work contributes to the design of a decision support system for emergency event detection and opinion mining. In the proposed approaches, emergency events are detected by leveraging cross-media analytics, and public sentiments are measured using an auto-expansion of the domain dictionary in the field of emergency management to eliminate the misclassification of the general dictionary and to make the quantization more accurate.

Details

Online Information Review, vol. 41 no. 4
Type: Research Article
ISSN: 1468-4527

Keywords

Article
Publication date: 27 November 2020

Hoda Daou

Social media is characterized by its volume, its speed of generation and its easy and open access; all this making it an important source of information that provides…

Abstract

Purpose

Social media is characterized by its volume, its speed of generation and its easy and open access; all this making it an important source of information that provides valuable insights. Content characteristics such as valence and emotions play an important role in the diffusion of information; in fact, emotions can shape virality of topics in social media. The purpose of this research is to fill the gap in event detection applied on online content by incorporating sentiment, more specifically strong sentiment, as main attribute in identifying relevant content.

Design/methodology/approach

The study proposes a methodology based on strong sentiment classification using machine learning and an advanced scoring technique.

Findings

The results show the following key findings: the proposed methodology is able to automatically capture trending topics and achieve better classification compared to state-of-the-art topic detection algorithms. In addition, the methodology is not context specific; it is able to successfully identify important events from various datasets within the context of politics, rallies, various news and real tragedies.

Originality/value

This study fills the gap of topic detection applied on online content by building on the assumption that important events trigger strong sentiment among the society. In addition, classic topic detection algorithms require tuning in terms of number of topics to search for. This methodology involves scoring the posts and, thus, does not require limiting the number topics; it also allows ordering the topics by relevance based on the value of the score.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-12-2019-0373

Details

Online Information Review, vol. 45 no. 1
Type: Research Article
ISSN: 1468-4527

Keywords

Article
Publication date: 15 October 2018

Xieling Chen, Shan Wang, Yong Tang and Tianyong Hao

The purpose of this paper is to explore the research status and development trend of the field of event detection in social media (ED in SM) through a bibliometric…

1022

Abstract

Purpose

The purpose of this paper is to explore the research status and development trend of the field of event detection in social media (ED in SM) through a bibliometric analysis of academic publications.

Design/methodology/approach

First, publication distributions are analyzed including the trends of publications and citations, subject distribution, predominant journals, affiliations, authors, etc. Second, an indicator of collaboration degree is used to measure scientific connective relations from different perspectives. A network analysis method is then applied to reveal scientific collaboration relations. Furthermore, based on keyword co-occurrence analysis, major research themes and their evolutions throughout time span are discovered. Finally, a network analysis method is applied to visualize the analysis results.

Findings

The area of ED in SM has received increasing attention and interest in academia with Computer Science and Engineering as two major research subjects. The USA and China contribute the most to the area development. Affiliations and authors tend to collaborate more with those within the same country. Among the 14 identified research themes, newly emerged themes such as Pharmacovigilance event detection are discovered.

Originality/value

This study is the first to comprehensively illustrate the research status of ED in SM by conducting a bibliometric analysis. Up-to-date findings are reported, which can help relevant researchers understand the research trend, seek scientific collaborators and optimize research topic choices.

Details

Online Information Review, vol. 43 no. 1
Type: Research Article
ISSN: 1468-4527

Keywords

Article
Publication date: 27 November 2018

Rajat Kumar Mudgal, Rajdeep Niyogi, Alfredo Milani and Valentina Franzoni

The purpose of this paper is to propose and experiment a framework for analysing the tweets to find the basis of popularity of a person and extract the reasons supporting…

Abstract

Purpose

The purpose of this paper is to propose and experiment a framework for analysing the tweets to find the basis of popularity of a person and extract the reasons supporting the popularity. Although the problem of analysing tweets to detect popular events and trends has recently attracted extensive research efforts, not much emphasis has been given to find out the reasons behind the popularity of a person based on tweets.

Design/methodology/approach

In this paper, the authors introduce a framework to find out the reasons behind the popularity of a person based on the analysis of events and the evaluation of a Web-based semantic set similarity measure applied to tweets. The methodology uses the semantic similarity measure to group similar tweets in events. Although the tweets cannot contain identical hashtags, they can refer to a unique topic with equivalent or related terminology. A special data structure maintains event information, related keywords and statistics to extract the reasons supporting popularity.

Findings

An implementation of the algorithms has been experimented on a data set of 218,490 tweets from five different countries for popularity detection and reasons extraction. The experimental results are quite encouraging and consistent in determining the reasons behind popularity. The use of Web-based semantic similarity measure is based on statistics extracted from search engines, it allows to dynamically adapt the similarity values to the variation on the correlation of words depending on current social trends.

Originality/value

To the best of the authors’ knowledge, the proposed method for finding the reason of popularity in short messages is original. The semantic set similarity presented in the paper is an original asymmetric variant of a similarity scheme developed in the context of semantic image recognition.

Details

International Journal of Web Information Systems, vol. 14 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 13 July 2015

Gebeyehu Belay Gebremeskel, Chai Yi, Chengliang Wang and Zhongshi He

Behavioral pattern mining for intelligent system such as SmEs sensor data are vitally important in many applications and performance optimizations. Sensor pattern mining…

Abstract

Purpose

Behavioral pattern mining for intelligent system such as SmEs sensor data are vitally important in many applications and performance optimizations. Sensor pattern mining (SPM) is also dynamic and a hot research issue to pervasive and ubiquitous of smart technologies toward improving human life. However, in large-scale sensor data, exploring and mining pattern, which leads to detect the abnormal behavior is challenging. The paper aims to discuss these issues.

Design/methodology/approach

Sensor data are complex and multivariate, for example, which data captured by the sensors, how it is precise, what properties are recorded or measured, are important research issues. Therefore, the method, the authors proposed Sequential Data Mining (SDM) approach to explore pattern behaviors toward detecting abnormal patterns for smart space fault diagnosis and performance optimization in the intelligent world. Sensor data types, modeling, descriptions and SPM techniques are discussed in depth using real sensor data sets.

Findings

The outcome of the paper is measured as introducing a novel idea how SDM technique’s scale-up to sensor data pattern mining. In the paper, the approach and technicality of the sensor data pattern analyzed, and finally the pattern behaviors detected or segmented as normal and abnormal patterns.

Originality/value

The paper is focussed on sensor data behavioral patterns for fault diagnosis and performance optimizations. It is other ways of knowledge extraction from the anomaly of sensor data (observation records), which is pertinent to adopt in many intelligent systems applications, including safety and security, efficiency, and other advantages as the consideration of the real-world problems.

Details

Industrial Management & Data Systems, vol. 115 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 26 March 2021

Hima Bindu Valiveti, Anil Kumar B., Lakshmi Chaitanya Duggineni, Swetha Namburu and Swaraja Kuraparthi

Road accidents, an inadvertent mishap can be detected automatically and alerts sent instantly with the collaboration of image processing techniques and on-road video…

Abstract

Purpose

Road accidents, an inadvertent mishap can be detected automatically and alerts sent instantly with the collaboration of image processing techniques and on-road video surveillance systems. However, to rely exclusively on visual information especially under adverse conditions like night times, dark areas and unfavourable weather conditions such as snowfall, rain, and fog which result in faint visibility lead to incertitude. The main goal of the proposed work is certainty of accident occurrence.

Design/methodology/approach

The authors of this work propose a method for detecting road accidents by analyzing audio signals to identify hazardous situations such as tire skidding and car crashes. The motive of this project is to build a simple and complete audio event detection system using signal feature extraction methods to improve its detection accuracy. The experimental analysis is carried out on a publicly available real time data-set consisting of audio samples like car crashes and tire skidding. The Temporal features of the recorded audio signal like Energy Volume Zero Crossing Rate 28ZCR2529 and the Spectral features like Spectral Centroid Spectral Spread Spectral Roll of factor Spectral Flux the Psychoacoustic features Energy Sub Bands ratio and Gammatonegram are computed. The extracted features are pre-processed and trained and tested using Support Vector Machine (SVM) and K-nearest neighborhood (KNN) classification algorithms for exact prediction of the accident occurrence for various SNR ranges. The combination of Gammatonegram with Temporal and Spectral features of the validates to be superior compared to the existing detection techniques.

Findings

Temporal, Spectral, Psychoacoustic features, gammetonegram of the recorded audio signal are extracted. A High level vector is generated based on centroid and the extracted features are classified with the help of machine learning algorithms like SVM, KNN and DT. The audio samples collected have varied SNR ranges and the accuracy of the classification algorithms is thoroughly tested.

Practical implications

Denoising of the audio samples for perfect feature extraction was a tedious chore.

Originality/value

The existing literature cites extraction of Temporal and Spectral features and then the application of classification algorithms. For perfect classification, the authors have chosen to construct a high level vector from all the four extracted Temporal, Spectral, Psycho acoustic and Gammetonegram features. The classification algorithms are employed on samples collected at varied SNR ranges.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 17 July 2020

Mukesh Kumar and Palak Rehan

Social media networks like Twitter, Facebook, WhatsApp etc. are most commonly used medium for sharing news, opinions and to stay in touch with peers. Messages on twitter…

Abstract

Social media networks like Twitter, Facebook, WhatsApp etc. are most commonly used medium for sharing news, opinions and to stay in touch with peers. Messages on twitter are limited to 140 characters. This led users to create their own novel syntax in tweets to express more in lesser words. Free writing style, use of URLs, markup syntax, inappropriate punctuations, ungrammatical structures, abbreviations etc. makes it harder to mine useful information from them. For each tweet, we can get an explicit time stamp, the name of the user, the social network the user belongs to, or even the GPS coordinates if the tweet is created with a GPS-enabled mobile device. With these features, Twitter is, in nature, a good resource for detecting and analyzing the real time events happening around the world. By using the speed and coverage of Twitter, we can detect events, a sequence of important keywords being talked, in a timely manner which can be used in different applications like natural calamity relief support, earthquake relief support, product launches, suspicious activity detection etc. The keyword detection process from Twitter can be seen as a two step process: detection of keyword in the raw text form (words as posted by the users) and keyword normalization process (reforming the users’ unstructured words in the complete meaningful English language words). In this paper a keyword detection technique based upon the graph, spanning tree and Page Rank algorithm is proposed. A text normalization technique based upon hybrid approach using Levenshtein distance, demetaphone algorithm and dictionary mapping is proposed to work upon the unstructured keywords as produced by the proposed keyword detector. The proposed normalization technique is validated using the standard lexnorm 1.2 dataset. The proposed system is used to detect the keywords from Twiter text being posted at real time. The detected and normalized keywords are further validated from the search engine results at later time for detection of events.

Details

Applied Computing and Informatics, vol. 17 no. 2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 1 June 2012

Yin Lili, Zhang Rubo and Gu Hengwen

The purpose of this paper is to provide a more capable and holistic adjustable autonomy system, involving situation reasoning among all involved information sources, to…

Abstract

Purpose

The purpose of this paper is to provide a more capable and holistic adjustable autonomy system, involving situation reasoning among all involved information sources, to make an adjustable autonomy system which knows what the situation is currently, what needs to be done in the present situation, and how risky the task is in the present situation. This will enhance efficiency for calculating the level of autonomy.

Design/methodology/approach

Situation reasoning methodologies are present in many autonomous systems which are called situation awareness. Situation awareness in autonomous systems is divided into three levels, situation perception, situation comprehension and situation projection. Situation awareness in these systems aims to make the tactical plans cognitive, but situation reasoning in adjustable autonomous systems aim to communicate mission assessments to unmanned vehicle or humans. Thus, in solving this problem, it is important to design a new situation reasoning module for the adjustable autonomous system.

Findings

The contribution of this paper is presenting the Situation Reasoning Module (SRM) for an adjustable autonomous system, which encapsulates event detection, cognitive situations, cognitive tasks, performance capacity assessment and integrated situation reason. The paper concludes by demonstrating the benefits of the SRM in a real‐world scenario, a situation reasoning simulation in unmanned surface vehicles (USV) while performing a navigation mission.

Originality/value

The method presented in this paper represents a new SRM to reason the situation for adjustable autonomous system. While the results presented in the paper are based on fuzzy logic and Bayesian network methodology. The results of this paper can be applicable to land, sea and air robotics in an adjustable autonomous system.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 5 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 11000