Search results

1 – 10 of over 11000
To view the access options for this content please click here
Article
Publication date: 1 August 2005

Baoyao Zhou, Siu Cheung Hui and Alvis C. M. Fong

With the explosive growth of information available on the World Wide Web, it has become much more difficult to access relevant information from the Web. One possible…

Abstract

With the explosive growth of information available on the World Wide Web, it has become much more difficult to access relevant information from the Web. One possible approach to solve this problem is web personalization. In this paper, we propose a novel WUL (Web Usage Lattice) based mining approach for mining association access pattern rules for personalized web recommendations. The proposed approach aims to mine a reduced set of effective association pattern rules for enhancing the online performance of web recommendations. We have incorporated the proposed approach into a personalized web recommender system known as AWARS. The performance of the proposed approach is evaluated based on the efficiency and the quality. In the efficiency evaluation, we measure the number of generated rules and the runtime for online recommendations. In the quality evaluation, we measure the quality of the recommendation service based on precision, satisfactory and applicability. This paper will discuss the proposed WUL‐based mining approach, and give the performance of the proposed approach in comparison with the Apriori‐based algorithms.

Details

International Journal of Web Information Systems, vol. 1 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

To view the access options for this content please click here
Article
Publication date: 1 November 2005

Yue‐Shi Lee, Show‐Jane Yen and Min‐Chi Hsieh

Web mining is one of the mining technologies, which applies data mining techniques in large amount of web data to improve the web services. Web traversal pattern mining

Abstract

Web mining is one of the mining technologies, which applies data mining techniques in large amount of web data to improve the web services. Web traversal pattern mining discovers most of the users’ access patterns from web logs. This information can provide the navigation suggestions for web users such that appropriate actions can be adopted. However, the web data will grow rapidly in the short time, and some of the web data may be antiquated. The user behaviors may be changed when the new web data is inserted into and the old web data is deleted from web logs. Besides, it is considerably difficult to select a perfect minimum support threshold during the mining process to find the interesting rules. Even though the experienced experts, they also cannot determine the appropriate minimum support. Thus, we must constantly adjust the minimum support until the satisfactory mining results can be found. The essences of incremental or interactive data mining are that we can use the previous mining results to reduce the unnecessary processes when the minimum support is changed or web logs are updated. In this paper, we propose efficient incremental and interactive data mining algorithms to discover web traversal patterns and make the mining results to satisfy the users’ requirements. The experimental results show that our algorithms are more efficient than the other approaches.

Details

International Journal of Web Information Systems, vol. 1 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

To view the access options for this content please click here
Article
Publication date: 12 June 2009

Richard S. Segall and Qingyu Zhang

The purpose of this paper is to illustrate the usefulness and results of applying web mining as extensions of data mining.

Abstract

Purpose

The purpose of this paper is to illustrate the usefulness and results of applying web mining as extensions of data mining.

Design/methodology/approach

Web mining is performed using three selected software to databases related to customer survey, marketing campaign data, and web site usage. The three selected software are PolyAnalyst® of Megaputer Intelligence, Inc., SPSS Clementine®, and ClickTracks by Web Analytics.

Findings

This paper discusses and compares the web mining technologies used by the selected software as applied to text, web, and click stream data.

Research limitations/implications

The limitations include the availability of databases and software to perform the web mining. The implications include that this methodology can be extended to other databases.

Practical implications

The methodology used in this paper could be representative of that used for managers to manage their relationships with customers, their marketing campaigns, and their web site activities.

Originality/value

PolyAnalyst is applied to analyze text data of actual written hotel comments. SPSS Clementine is applied to customer web data collected in response to several different marketing campaigns, including age, gender, and income. ClickTracks is applied to click‐stream data for Bob's Fruit web site to generate click fraud report, search report with revenues, pay‐per‐click, and search keywords for all visitors.

Details

Kybernetes, vol. 38 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

To view the access options for this content please click here
Article
Publication date: 4 May 2010

Qingyu Zhang and Richard S. Segall

The purpose of this paper is to review and compare selected software for data mining, text mining (TM), and web mining that are not available as free open‐source software.

Abstract

Purpose

The purpose of this paper is to review and compare selected software for data mining, text mining (TM), and web mining that are not available as free open‐source software.

Design/methodology/approach

Selected softwares are compared with their common and unique features. The software for data mining are SAS® Enterprise Miner™, Megaputer PolyAnalyst® 5.0, NeuralWare Predict®, and BioDiscovery GeneSight®. The software for TM are CompareSuite, SAS® Text Miner, TextAnalyst, VisualText, Megaputer PolyAnalyst® 5.0, and WordStat. The software for web mining are Megaputer PolyAnalyst®, SPSS Clementine®, ClickTracks, and QL2.

Findings

This paper discusses and compares the existing features, characteristics, and algorithms of selected software for data mining, TM, and web mining, respectively. These softwares are also applied to available data sets.

Research limitations/implications

The limitations are the inclusion of selected software and datasets rather than considering the entire realm of these. This review could be used as a framework for comparing other data, text, and web mining software.

Practical implications

This paper can be helpful for an organization or individual when choosing proper software to meet their mining needs.

Originality/value

Each of the software selected for this research has its own unique characteristics, properties, and algorithms. No other paper compares these selected softwares both visually and descriptively for all the three types of data, text, and web mining.

Details

Kybernetes, vol. 39 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

To view the access options for this content please click here
Article
Publication date: 11 April 2008

Georgios Lappas

The focus of this paper is a survey of webmining research related to areas of societal benefit. The article aims to focus particularly on web mining which may benefit…

Abstract

Purpose

The focus of this paper is a survey of webmining research related to areas of societal benefit. The article aims to focus particularly on web mining which may benefit societal areas by extracting new knowledge, providing support for decision making and empowering the effective management of societal issues.

Design/methodology/approach

E‐commerce and e‐business are two fields that have been empowered by web mining, having many applications for increasing online sales and doing intelligent business. Have areas of social interest also been empowered by web mining applications? What are the current ongoing research and trends in e‐services fields such as e‐learning, e‐government, e‐politics and e‐democracy? What other areas of social interest can benefit from web mining? This work will try to provide the answers by reviewing the literature for the applications and methods applied to the above fields.

Findings

There is a growing interest in applications of web mining that are of social interest. This reveals that one of the current trends of web mining is toward the connection between intelligent web services and societal benefit applications, which denotes the need for interdisciplinary collaboration between researchers from various fields.

Originality/value

On the one hand, this work presents to the webmining community an overview of research opportunities in societal benefit areas. On the other hand, it presents to web researchers from various disciplines an approach for improving their web studies by considering web mining as a powerful research tool.

Details

Online Information Review, vol. 32 no. 2
Type: Research Article
ISSN: 1468-4527

Keywords

To view the access options for this content please click here
Book part
Publication date: 8 June 2011

Stefan Strohmeier and Franca Piazza

Numerous research questions in e-HRM research are directly related to the usage of diverse information systems by HR professionals, line managers, employees, and/or…

Abstract

Numerous research questions in e-HRM research are directly related to the usage of diverse information systems by HR professionals, line managers, employees, and/or applicants. Since they are regularly based on Internet technologies, information systems in e-HRM automatically store detailed usage data in log files of web servers. Subsumed as “web mining,” such data are frequently used as inputs for innovative data analysis in e-commerce practice. Though also promising in empirical e-HRM research, web mining is neither discussed nor applied in this area at present. Our chapter therefore aims at a methodological evaluation of web mining as an e-HRM research approach. After introducing web mining as a possible approach in e-HRM research, we examine its applicability by discussing available data, feasible methods, coverable topics, and confirmable privacy. Subsequently, we classify the approach methodologically by examining major issues. Our evaluation reveals that “web mining” constitutes a promising additional research approach that enables research to answer numerous relevant questions related to the actual usage of information systems in e-HRM.

Details

Electronic HRM in Theory and Practice
Type: Book
ISBN: 978-0-85724-974-6

To view the access options for this content please click here
Article
Publication date: 1 August 2005

Ming Yin Ming, Dion Hoe‐lian Goh, Ee‐Peng Lim and Aixin Sun

A web site usually contains a large number of concept entities, each consisting of one or more web pages connected by hyperlinks. In order to discover these concept…

Abstract

A web site usually contains a large number of concept entities, each consisting of one or more web pages connected by hyperlinks. In order to discover these concept entities for more expressive web site queries and other applications, the web unit mining problem has been proposed. Web unit mining aims to determine web pages that constitute a concept entity and classify concept entities into categories. Nevertheless, the performance of an existing web unit mining algorithm, iWUM, suffers as it may create more than one web unit (incomplete web units) from a single concept entity. This paper presents two methods to solve this problem. The first method introduces a more effective web fragment construction method so as reduce later classification errors. The second method incorporates site‐specific knowledge to discover and handle incomplete web units. Experiments show that incomplete web units can be removed and overall accuracy has been significantly improved, especially on the precision and F1 measures.

Details

International Journal of Web Information Systems, vol. 1 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

To view the access options for this content please click here
Article
Publication date: 11 April 2008

Rong Gu, Miaoliang Zhu, Liying Zhao and Ningning Zhang

Behaviour in virtual learning environments (VLE), including travel, gaze, manipulate, gesture and conversation, offer considerable information about the user's implicit…

Abstract

Purpose

Behaviour in virtual learning environments (VLE), including travel, gaze, manipulate, gesture and conversation, offer considerable information about the user's implicit interest. The purpose of this study is to find an approach for user interest mining via behaviour analysis in a VLE.

Design/methodology/approach

According to research in psychology, any interaction in a VLE has implications for the user's implicit interest. In order to mine a user's implicit interest, an explicit interaction‐interest model needs to be established. This paper presents findings from the concept classification of behaviour in a VLE. Based on this classification, the paper proposes a hierarchical interaction model. In this model the relation between interaction and user interest can be described and used to improve system performance.

Findings

In the experimental prototype the authors found that user‐implicit interest could be mined via stages of web mining, i.e. capture the user's original gesture signal, data pre‐process, pattern discovery, interaction goal and interest mining. The mined user's interest information can be used to update the state of local interest, leading to a reduction in network traffic and promotion of better system performance.

Originality/value

This is an original study using behaviour analysis for interest mining in e‐learning. Research on interest mining in e‐learning focused on content mining or search engine and usage mining in web courses. The paper provides valuable clues regarding user interest mining in a VLE, in which the context is different from usual web courses. The research output can be implemented widely, including online learning, and especially in the VLE.

Details

Online Information Review, vol. 32 no. 2
Type: Research Article
ISSN: 1468-4527

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 2002

Tim France, Dave Yen, Jyun‐Cheng Wang and Chia‐Ming Chang

In recent years, the World Wide Web (WWW) has become incredibly popular in homes and offices alike. Consumers need to search for relevant information to help solve…

Abstract

In recent years, the World Wide Web (WWW) has become incredibly popular in homes and offices alike. Consumers need to search for relevant information to help solve purchasing problems on various Web sites. Although there is no question that great numbers of WWW users will continue using search engines for information retrieval, consumers still hesitate before making a final decision, often because only rough and limited information about the products is made available. Consequently, consumers need the help of data mining in order to help them make informed decisions. Herein we propose a new approach to integrating a search engine with data mining in an effort to help support customer‐oriented information search action. This approach also illustrates how to reduce the consumer’s information search perplexity.

Details

Information Management & Computer Security, vol. 10 no. 5
Type: Research Article
ISSN: 0968-5227

Keywords

To view the access options for this content please click here
Article
Publication date: 11 April 2008

Yanbin Tu

Purpose – This study aims to introduce an application of web‐based data mining that integrates online data collection and data mining in selling strategies for online…

Abstract

Purpose – This study aims to introduce an application of web‐based data mining that integrates online data collection and data mining in selling strategies for online auctions. This study seeks to illustrate the process of spider online data collection from eBay and the application of the classification and regression tree (CART) in constructing effective selling strategies. Design/methodology/approach – After developing a prototype of web‐based data mining, the four steps of spider online data collection and CART data mining are shown. A business dataset from eBay is collected, and the application to derive effective selling strategies for online auctions is used. Findings – In the web‐based data‐mining application the spiders can effectively and efficiently collect online auction data from the internet, and the CART model provides sellers with effective selling strategies. By using expected auction prices with the classification and regression trees, sellers can integrate their two primary goals, i.e. auction success and anticipated prices, in their selling strategies for online auctions. Practical implications – This study provides sellers with a useful tool to construct effective selling strategies by taking advantage of web‐based data mining. These effective selling strategies will help improve their online auction performance. Originality/value – This study contributes to the literature by providing an innovative tool for collecting online data and for constructing effective selling strategies, which are important for the growth of electronic marketplaces.

Details

Online Information Review, vol. 32 no. 2
Type: Research Article
ISSN: 1468-4527

Keywords

1 – 10 of over 11000