Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 4 January 2024

Chang Liu, Shiwu Yang, Yixuan Yang, Hefei Cao and Shanghe Liu

In the continuous development of high-speed railways, ensuring the safety of the operation control system is crucial. Electromagnetic interference (EMI) faults in signaling…

Abstract

Purpose

In the continuous development of high-speed railways, ensuring the safety of the operation control system is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation interruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances on signaling equipment and establishing evaluation methods for the correlation between EMI and safety is urgently needed.

Design/methodology/approach

This paper elaborates on the necessity and significance of studying the impact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railway operations and continuous development. The current status of research methods and achievements from the perspectives of standard systems, reliability analysis and safety assessment are examined layer by layer. Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMI and signaling safety.

Findings

Despite certain innovative achievements in both domestic and international standard systems and related research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitative correlation between EMI and safety has yet to be established. On this basis, this paper proposes considerations for research methods pertaining to the correlation between EMI and safety.

Originality/value

This paper overviews a series of methods and outcomes derived from domestic and international studies regarding railway signaling safety, encompassing standard systems, reliability analysis and safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact of EMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as a bridge to establish the correlation between EMI and signaling safety is proposed.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 February 2024

Xiaobo Shi, Yan Liu, Kunkun Ma, Zixin Gu, Yaning Qiao, Guodong Ni, Chibuzor Ojum, Alex Opoku and Yong Liu

The purpose is to identify and evaluate the safety risk factors in the coal mine construction process.

Abstract

Purpose

The purpose is to identify and evaluate the safety risk factors in the coal mine construction process.

Design/methodology/approach

The text mining technique was applied in the stage of safety risk factor identification. The association rules method was used to obtain associations with safety risk factors. Decision-Making Trial and Evaluation Laboratory (DEMATEL) and Interpretative Structural Modeling (ISM) were utilized to evaluate safety risk factors.

Findings

The results show that 18 safety risk factors are divided into 6 levels. There are 12 risk transmission paths in total. Meanwhile, unsafe behavior and equipment malfunction failure are the direct causes of accidents, and inadequate management system is the basic factor that determines the safety risk status.

Research limitations/implications

Due to the limitation of the computational matrix workload, this article only categorizes numerous lexical items into 18 factors. Then, the workshop relied on a limited number of experts; thus, the findings may be potentially biased. Next, the accident report lacks a universal standard for compilation, and the use of text mining technique may be further optimized. Finally, since the data are all from China, subsequent cross-country studies should be considered.

Social implications

The results can help China coal mine project managers to have a clear understanding of safety risks, efficiently carry out risk hazard identification work and take timely measures to cut off the path of transmission with risks identified in this study. This helps reduce the economic losses of coal mining enterprises, thus improving the safety standards of the entire coal mining industry and the national standards for coal mine safety policy formulation.

Originality/value

Coal mine construction projects are characterized by complexity and difficulties in construction. Current research on the identification and assessment of safety risk factors in coal mine construction is insufficient. This study combines objective and systematic research approaches. The findings contribute to the safety risk management of China coal mine construction projects by providing a basis for the development of safety measures.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 April 2024

Sonali Khatua, Manoranjan Dash and Padma Charan Mishra

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and…

Abstract

Purpose

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and life cycles. This study aims to depict the development and life cycle of large open-pit iron ore mines and the intertwined organizational design of the departments/sections operated within the industry.

Design/methodology/approach

Primary data were collected on the site by participant observation, in-depth interviews of the field staff and executives, and field notes. Secondary data were collected from the literature review to compare and cite similar or previous studies on each mining activity. Finally, interactions were conducted with academic experts and top field executives to validate the findings. An organizational ethnography methodology was employed to study and analyse four large-scale iron ore mines of India’s largest iron-producing state, Odisha, from January to April 2023.

Findings

Six stages were observed for development and life cycle, and the operations have been depicted in a schematic diagram for ease of understanding. The intertwined functioning of organizational set-up is also discovered.

Originality/value

The paper will benefit entrepreneurs, mining and geology students, new recruits, and professionals in allied services linked to large iron ore mines. It offers valuable insights for knowledge enhancement, operational manual preparation and further research endeavours.

Details

Journal of Organizational Ethnography, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6749

Keywords

Article
Publication date: 11 October 2022

Eric Kodzo Adzivor, Fidelis Emuze and Dillip Kumar Das

The purpose of this article is to determine safety culture indicators that can improve the health and safety performance of small and medium-sized enterprise (SME) contractors in…

Abstract

Purpose

The purpose of this article is to determine safety culture indicators that can improve the health and safety performance of small and medium-sized enterprise (SME) contractors in Ghana.

Design/methodology/approach

A three-round Delphi method was used. The first round consisted of 31 experts out of which 18 of them rated their agreements with a set of 87 potential safety culture indicators using a 10-point Likert scale of importance (1 = important and 10 = very important) and the 16 experts who completed the final round were given the opportunity to suggest other indicators. The 87 indicators were categorised into 14 core health and safety elements. Indicators that attained a group median value of 5–10 for 50% or more expert ratings were accepted.

Findings

At the end of the third round, a consensus was reached on the indicators when they attracted median scores of 5–10 for at least 50% or more of the health and safety experts rated the indicators between 5 and 10. Out of a total of 87 indicators at the start of the Delphi process, the consensus was reached on 70 that were retained.

Research limitations/implications

The health and safety experts were not given the opportunity to add new indicators to the structured questionnaire until the third round.

Originality/value

This is the first study, to the best of the authors’ knowledge, to have a consensus by health and safety experts on leading indicator metrics of positive culture of construction safety in Ghana for improved SME construction company’s health and safety performance in Ghana. If these indicators are adopted and used effectively in Ghana, they would ensure positive culture of construction safety and subsequently help to protect construction workers.

Details

Journal of Financial Management of Property and Construction , vol. 28 no. 3
Type: Research Article
ISSN: 1366-4387

Keywords

Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

2006

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 9 September 2022

Lianhua Cheng and Dongqiang Cao

Clarifying the risk evolution mechanism of housing construction for work-safety management is essential. Existing studies have inadequately discussed the risk-accumulation process…

Abstract

Purpose

Clarifying the risk evolution mechanism of housing construction for work-safety management is essential. Existing studies have inadequately discussed the risk-accumulation process in housing construction. Therefore, this study aimed to use the complex network theory and risk allocation mechanisms to explore the evolution of risk factors.

Design/methodology/approach

The authors analysed a database of housing construction accidents in China from 2015 to 2020 to identify risk factors. Moreover, the causal relationship between risk factors was determined through a systematic analysis of the logical sequence of risk factors. A complex network was used to construct a risk network for housing construction accidents (RNHCA).

Findings

The risk matrix method was used to define the factor risk threshold, and a risk value was assigned based on the correlation between risk factors. This contributes to the examination of the evolution mechanism of risk networks in the process of risk factor transmission. The case verification results show that the RNHCA quantitative assessment model can better evaluate the system risk status of housing construction accidents. Furthermore, this model can identify the key risk factors and risk chains with high risk in the evolution of the risk network.

Research limitations/implications

Accident investigation reports need to be classified and processed to analyse the evolution law of risk networks under different scales of construction project, such as high-rise buildings, middle-rise buildings, and low-rise buildings.

Practical implications

This study clarified the risk evolution process of complex systems in housing construction and provided a new method for analysing accidents.

Originality/value

This study clarifies the risk value allocation of risk factors in the transmission process and reveals the process of risk factor evolution in housing construction. This study explains the individual risk factors that form a systemic risk through the transmission chain. Moreover, this paper clarified the transformation relationship between system risk and accidents. The paper also provided a new perspective for risk analysis.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 May 2022

Odey Alshboul, Ali Shehadeh, Omer Tatari, Ghassan Almasabha and Eman Saleh

Efficient management of earthmoving equipment is critical for decision-makers in construction engineering management. Thus, the purpose of this paper is to prudently identify…

Abstract

Purpose

Efficient management of earthmoving equipment is critical for decision-makers in construction engineering management. Thus, the purpose of this paper is to prudently identify, select, manage and optimize the associated decision variables (e.g. capacity, number and speed) for trucks and loaders equipment to minimize cost and time objectives.

Design/methodology/approach

This paper addresses an innovative multiobjective and multivariable mathematical optimization model to generate a Pareto-optimality set of solutions that offers insights of optimal tradeoffs between minimizing earthmoving activity’s cost and time. The proposed model has three major stages: first, define all related decision variables for trucks and loaders and detect all related constraints that affect the optimization model; second, derive the mathematical optimization model and apply the multiobjective genetic algorithms and classify all inputs and outputs related to the mathematical model; and third, model validation.

Findings

The efficiency of the proposed optimization model has been validated using a case study of earthmoving activities based on data collected from the real-world construction site. The outputs of the conducted optimization process promise the model’s originality and efficiency in generating optimal solutions for optimal time and cost objectives.

Originality/value

This model provides the decision-maker with an efficient tool to select the optimal design variables to minimize the activity's time and cost.

Details

Journal of Facilities Management , vol. 22 no. 1
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 23 August 2022

Roberta Stefanini, Giovanni Paolo Carlo Tancredi, Giuseppe Vignali and Luigi Monica

In the context of the Industry 4.0, this paper aims to investigate the state of the art of Italian manufacturing, focusing the attention on the implementation of intelligent…

1841

Abstract

Purpose

In the context of the Industry 4.0, this paper aims to investigate the state of the art of Italian manufacturing, focusing the attention on the implementation of intelligent predictive maintenance (IPdM) and 4.0 key enabling technologies (KETs), analyzing advantages and limitations encountered by companies.

Design/methodology/approach

A survey has been developed by the University of Parma in cooperation with the Italian Workers' Compensation Authority (INAIL) and was submitted to a sample of Italian companies. Overall, 70 answers were collected and analyzed.

Findings

Results show that the 54% of companies implemented smart technologies, increasing quality and safety, reducing the operating costs and sometimes improving the process' sustainability. However, IPdM was implemented only by the 37% of respondents: thanks to big data collection and analytics, Internet of Things, machine learning and collaborative robots, they reduced downtime and maintenance costs. These changes were implemented mainly by large companies, located in northern Italy. To spread the use of IPdM in Italian manufacturing, the high initial investment, lack of skilled labor and difficulties in the integration of new digital technologies with the existing infrastructure are the main obstacles to overcome.

Originality/value

The article gives an overview on the current state of the art of 4.0 technologies implementation in Italy: it is useful not only for companies that want to discover the implementations' advantages but also for institutions or research centres that could help them to solve the encountered obstacles.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 31 October 2023

Yunshuo Liu, Shuzhen Liu, Ruijian Liu and Yuanyuan Liu

The purpose of this study is to examine the effects of leader mindfulness on employee safety behaviors by focusing on the mediating role of employee resilience and the moderating…

Abstract

Purpose

The purpose of this study is to examine the effects of leader mindfulness on employee safety behaviors by focusing on the mediating role of employee resilience and the moderating role of perceived environmental uncertainty.

Design/methodology/approach

The authors surveyed 248 employees in the high speed railway company of China in three waves with a two-week interval. Hierarchical regression analysis was used to test the hypotheses. The mediating effects and the moderated mediation effects are further tested with bias-corrected bootstrapping method.

Findings

Leader mindfulness positively affects employee safety compliance and safety participation, and these relationships were mediated by employee resilience. Perceived environmental uncertainty moderated the effects of leader mindfulness on employee resilience and the indirect effects of leader mindfulness on safety behaviors via employee resilience.

Originality/value

The findings elucidate the significance of leader mindfulness in promoting employee safety behaviors in the workplace.

Details

Journal of Managerial Psychology, vol. 39 no. 3
Type: Research Article
ISSN: 0268-3946

Keywords

1 – 10 of over 1000