Search results

1 – 10 of 15
Article
Publication date: 16 October 2023

Monapriya Naidu Kerinasamy Naidu, Iling Aema Wonnie Ma, Sachin Sharma Ashok Kumar, Vengadaesvaran Balakrishnan, Ramesh Subramaniam and Ramesh Kasi

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Abstract

Purpose

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Design/methodology/approach

In this work, a novel attempt is made to develop binder coatings using epoxidized natural rubber-based material and an organic resin (acrylic resin) for corrosion protection on metal substrate. Seven different samples of multifunctional coatings are developed by varying the compositions of epoxidized natural rubber (ENR) and acrylic resin. The properties of the developed coatings have been characterized using analytical methods such as Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). EIS has been carried out for 30ā€‰days to evaluate the corrosion resistance after immersing into 3.5ā€‰wt.% of sodium chloride. Cross hatch cut tester (CHT) has been used to study the adhesive properties. UVā€“Visible Spectroscopy (UVā€“Vis) was also used to assess changes in the coating-film transparency of the natural rubber-based coating systems in this study.

Findings

The developed coatings have formed uniform layer on the substrate. CHT results show excellent adhesion of the coatings. Higher concentrations of ENR have higher transparency level, which reduces when the acrylic concentration increases. FTIR analysis confirms the crosslinking that occurred between the components of the coatings. Based on the impedance data from EIS, the incorporation of natural rubber can be an additive for the corrosion protection, which has the coating resistance values well above 108Ī© even after 30ā€‰days of immersion.

Practical implications

The blending method provides a simple and practical solution to improve the strength and adhesion properties of acrylic polyol resin with epoxidized natural rubber. There is still improvement needed for long-term applications.

Originality/value

The work has been conducted in our laboratory. The combination of natural rubber-based materials and organic resins is a new approach in coating research.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 July 2024

Shubham Potdar and Ramanand Jagtap

For the sake of sustainable development and environmental preservation, it is crucial to develop UV-curable coatings composed of renewable resources. Castor oil, being both…

32

Abstract

Purpose

For the sake of sustainable development and environmental preservation, it is crucial to develop UV-curable coatings composed of renewable resources. Castor oil, being both bio-based and economical, serves as the focal point of this research paper. The purpose of this research paper is to synthesize, formulate and apply a UV-curable biobased oligomer ECOSAGMA as a wood coating, with a focus on sustainable development and environmental preservation. Castor oil, being both bio-based and economical, serves as the focal point of this research paper.

Design/methodology/approach

ECOSAGMA was prepared by reacting epoxidized castor oil with sebacic acid, followed by reaction with glycidyl methacrylate through ring opening reaction. The chemical structure of ECOSAGMA was confirmed by Fourier-Transform infrared spectroscopy, 13C-NMR and 1H-NMR spectroscopy. The synthesized oligomer was used for UV-curable coating formulations by combining it with varying amounts of TMPTA from 10 to 40ā€‰wt.% and studied for their rheological properties. The UV curable formulations were co-photopolymerized into thin coatings and were thoroughly examined based on thermal, chemical and mechanical properties.

Findings

The UV-cured coating containing ECOSAGMA and TMPTA exhibits exceptional mechanical, chemical and thermal properties, underscoring their potential for deployment in real-world application. It is observed that an increase in the concentration of TMPTA is associated with a notable enhancement in the properties of the UV-cured coatings. The UV-cured wood coating, composed of 40 wt.% TMPTA, demonstrates remarkable stain resistance properties.

Originality/value

In conclusion, by embracing eco-friendly and economically conscious principles., it is evident that this synthesized novel castor oil-based oligomer offers a range of valuable properties to the coating such as stain resistance and thermal stability as well as characteristics such as gloss, hardness, adhesion and chemical resistance.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 July 2024

Heba Raslan, Khaled El-Nemr, Magdy Ali and Medhat Hassan

This study aims to investigate the influences of polyester fabric layers on the mechanical properties of SBR and devulcanized waste rubber composite materials, as well as the…

Abstract

Purpose

This study aims to investigate the influences of polyester fabric layers on the mechanical properties of SBR and devulcanized waste rubber composite materials, as well as the effect of gamma irradiation dose.

Design/methodology/approach

The devulcanized waste rubbers (DWR) were carried out by different methods. First, chemically, by two different reclaiming agents such as tetramethylthiuram disulfide (TMTD) and 2-mercapto benzothiazole disulfide (MBTS). Secondary by a physical method like microwave (MW). The devulcanized rubbers were mixed with virgin styrene butadiene rubber (SBR) in different ratios, as follows: SBR-DWR (TMTD) 50 / 50, SBR-DWR (MBTS) 80 / 20 and SBR-DWR (MW) 80 / 20. A series of sandwich polyester tire cord fabrics were used as reinforcement for making SBR and devulcanized waste rubber composite materials and molded on a hot press into rubber sheet films, then subjected to gamma radiation at different doses ranging from 100 up to 200 kGy.

Findings

The experimental results indicate that increasing the layer number improves the mechanical properties of composites. The tensile strength, tearing, hardness and elastic modulus of the rubber composites increased with the rise of the fiber layers and by increasing the irradiation dose up to 200 kGy. The reclaiming agent TMTD gave the best results for mechanical properties, followed by MW and then MBTS.

Originality/value

This phenomenon can be detailed based on the fact that when the fiber-reinforced composites are subjected to loading, the fibers act as load carriers, depending on the population and orientation of the fibers. Also, scanning electron microscopy (SEM) reveals that adhesion was caused by tire cord fabrics and rubber blend matrix.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 June 2022

Debasmita Mohanty, Krishnan Kanny, Smita Mohanty and Sanjay K. Nayak

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize…

Abstract

Purpose

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize automobile base coat (BC).

Design/methodology/approach

Bio-based polyurethane (PU) coating applicable in automobile BC was synthesized by using modified castor oil incorporated with nano silica (NS) and titanium-based pigment particles. The influential characteristics of the coating was studied by carrying out cross-cut tape test, abrasion resistance, pencil hardness, lap-shear, thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis and acid, alkali and oil resistance tests.

Findings

Incorporation of NS particles, along with titanium-based pigment particles in optimized ratio into the paint matrix, increases the mechanical, chemical and oil resistance properties and hydrophobicity of the BC, and the findings are compared with the petro-based commercial BC.

Research limitations/implications

There is no significant improvement in thermal properties of the paint matrix, and it is less thermally stable than the commercial BC.

Practical implications

The paint developed through this study provides a simple and practical solution to reduce the petro-based feed-stock in automobile paint industry.

Originality/value

The current work which reports the use of ecofriendly PU BC for automobile paint applications is novel and findings of this study are original.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2023

Ümran Burcu Alkan, Nilgün Kızılcan and Başak Bengü

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Abstract

Purpose

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Design/methodology/approach

Three-step urea formaldehyde (UF) resin has been in situ modified with calcium lignosulfonate (LS) and/or 1,4 butanediol diglycidyl ether (GE). The structural, chemical, thermal and morphological characterizations were carried out on resin samples. These resins have been applied for particleboard pressing, and UF, UF-LS and UF-GE were evaluated as P2 classes according to EN 312.

Findings

The results show that the improved LS- or diglycidyl ether-modified UF wood adhesives were successful in their adhesive capacity, and the formaldehyde content of the final product was obtained as low as 8ā€‰mg/100 g. This paper highlights that the presented adhesive formulations could be a potential eco-friendly and cost-effective alternative to formaldehyde-based wood adhesives for interior particleboard production.

Research limitations/implications

Combination of LS and GE resulted in weaker mechanical properties and fulfilled P1 class particleboards due to temperature and duration conditions. Therefore, in situ usage of LS or GE in UF resins is highly recommended for particleboard pressing. Formaldehyde content of particleboards was determined with the perforator method according to EN 12460-5 and all of the particleboards exhibited E1 class. LS was more efficient in decreasing formaldehyde content than GE.

Practical implications

This study provides the application of particleboards with low formaldehyde emission.

Social implications

The developed LS- and diglycidyl ether-modified UF resins made it possible to obtain boards with significantly low formaldehyde content compared with commercial resins.

Originality/value

The developed formaldehyde-based resin formulation made it possible to produce laboratory-scale board prototypes using LS or GE without sacrificing of press factors and panel quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 September 2023

Jiabao Pan, Rui Li and Ao Wang

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Abstract

Purpose

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Design/methodology/approach

Nano magnetorheological grease was prepared via a thermal water bath with stirring. The lubricating properties of the grease were investigated at different temperatures. Then the lubricity of the prepared nano magnetorheological grease was investigated under the effect of thermomagnetic coupling.

Findings

As the temperature rises, the coefficient of friction of grease lubrication gradually increases, surface wear gradually increases and lubrication performance gradually decreases. Compared with grease, magnetorheological grease has a decreased coefficient of friction and enhanced lubrication effect under the action of a magnetic field at different temperatures.

Originality/value

A lubrication method using a magnetic field to reduce the effect of temperature is established, thereby providing new ideas for lubrication design under a wide range of temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2024

Qiqi Zhang, Weijun Zhen, Quansheng Ou, Yusufu Abulajiang and Gangshan Ma

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization…

10

Abstract

Purpose

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization of CSO, trimethylolpropane, phthalic anhydride (PA) and trimellitic anhydride (TMA). The prepared resin coating material was subsequently applied to the surface of steel structure material.

Design/methodology/approach

This study aimed to synthesize water-based alkyd resins using CSO. Therefore, the alkyd resin was introduced with TMA containing carboxyl groups and neutralized with triethylamine (TEA) to form a water-soluble salt. Then, the esterification kinetics of CSO water-based alkyd resin were investigated, and finally, the basic properties of CSO water-based alkyd resin coating were evaluated.

Findings

It was demonstrated that CSO water-based alkyd resin exhibited excellent water solubility and that the esterification kinetic of the synthesis reaction could be described by a second-order reaction. The coating properties of the material were investigated and found to have good basic properties, with 40% resin addition having the best corrosion resistance. Consequently, it could be effectively applied to the surface of steel structural materials.

Originality/value

This study not only met the requirement of environmentally friendly development but also expanded the application of CSO through the synthesis of CSO water-based alkyd resin via alcoholysis. Compared to fatty acid process, the alcoholysis reduced the need for fatty acid pre-extraction, simplifying the alkyd resin synthesis process. Thus, economic costs are effectively reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7ā€“11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-Nā€™-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

79

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2024

Umesh Mahajan and S.T. Mhaske

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl…

Abstract

Purpose

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl methacrylate (HEMA) terminated urethane acrylate oligomer was synthesized and characterized to study its application in stereolithography 3D printing with different ratios of isobornyl acrylate and hexanediol diacrylate.

Design/methodology/approach

Polyester polyol was synthesized from suberic acid and butanediol. Additionally, isophorone diisocyanate, polyester polyol and HEMA were used to create urethane acrylate oligomer. Fourier transform infrared spectroscopy and 1H NMR were used to characterize the polyester polyol and oligomer. Various formulations were created by combining oligomer with reactive diluents in concentrations ranging from 0% to 30% by weight and curing with ultraviolet (UV) radiation. The cured coatings and 3D printed specimens were then evaluated for their properties.

Findings

The findings revealed an improvement in thermal stability, contact angle value, tensile strength and surface properties of the product which indicated its suitability for use as a 3D printing material.

Originality/value

This study discusses how oligomers that have been cured by UV radiation with mono- and difunctional reactive diluents give excellent coating characteristics and demonstrate suitability and stability for 3D printing applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 15