Search results

1 – 10 of 623
Open Access
Article
Publication date: 10 December 2020

Gopi Battineni, Nalini Chintalapudi and Francesco Amenta

As of July 30, 2020, more than 17 million novel coronavirus disease 2019 (COVID-19) cases were registered including 671,500 deaths. Yet, there is no immediate medicine or…

2852

Abstract

Purpose

As of July 30, 2020, more than 17 million novel coronavirus disease 2019 (COVID-19) cases were registered including 671,500 deaths. Yet, there is no immediate medicine or vaccination for control this dangerous pandemic and researchers are trying to implement mathematical or time series epidemic models to predict the disease severity with national wide data.

Design/methodology/approach

In this study, the authors considered COVID-19 daily infection data four most COVID-19 affected nations (such as the USA, Brazil, India and Russia) to conduct 60-day forecasting of total infections. To do that, the authors adopted a machine learning (ML) model called Fb-Prophet and the results confirmed that the total number of confirmed cases in four countries till the end of July were collected and projections were made by employing Prophet logistic growth model.

Findings

Results highlighted that by late September, the estimated outbreak can reach 7.56, 4.65, 3.01 and 1.22 million cases in the USA, Brazil, India and Russia, respectively. The authors found some underestimation and overestimation of daily cases, and the linear model of actual vs predicted cases found a p-value (<2.2e-16) lower than the R2 value of 0.995.

Originality/value

In this paper, the authors adopted the Fb-Prophet ML model because it can predict the epidemic trend and derive an epidemic curve.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 26 October 2020

Gopi Battineni, Nalini Chintalapudi and Francesco Amenta

After the identification of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at Wuhan, China, a pandemic was widely spread worldwide. In Italy, about 240,000…

2258

Abstract

Purpose

After the identification of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at Wuhan, China, a pandemic was widely spread worldwide. In Italy, about 240,000 people were infected because of this virus including 34,721 deaths until the end of June 2020. To control this new pandemic, epidemiologists recommend the enforcement of serious mitigation measures like country lockdown, contact tracing or testing, social distancing and self-isolation.

Design/methodology/approach

This paper presents the most popular epidemic model of susceptible (S), exposed (E), infected (I) and recovered (R) collectively called SEIR to understand the virus spreading among the Italian population.

Findings

Developed SEIR model explains the infection growth across Italy and presents epidemic rates after and before country lockdown. The results demonstrated that follow-up of strict measures such that country lockdown along with high testing is making Italy practically a pandemic-free country.

Originality/value

These models largely help to estimate and understand how an infectious agent spreads in a particular country and how individual factors can affect the dynamics. Further studies like classical SEIR modeling can improve the quality of data and implementation of this modeling could represent a novelty of epidemic models.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 15 February 2021

Qi Sun, Fang Sun, Cai Liang, Chao Yu and Yamin Zhang

Beijing rail transit can actively control the density of rail transit passenger flow, ensure travel facilities and provide a safe and comfortable riding atmosphere for rail…

Abstract

Purpose

Beijing rail transit can actively control the density of rail transit passenger flow, ensure travel facilities and provide a safe and comfortable riding atmosphere for rail transit passengers during the epidemic. The purpose of this paper is to efficiently monitor the flow of rail passengers, the first method is to regulate the flow of passengers by means of a coordinated connection between the stations of the railway line; the second method is to objectively distribute the inbound traffic quotas between stations to achieve the aim of accurate and reasonable control according to the actual number of people entering the station.

Design/methodology/approach

This paper analyzes the rules of rail transit passenger flow and updates the passenger flow prediction model in time according to the characteristics of passenger flow during the epidemic to solve the above-mentioned problems. Big data system analysis restores and refines the time and space distribution of the finely expected passenger flow and the train service plan of each route. Get information on the passenger travel chain from arriving, boarding, transferring, getting off and leaving, as well as the full load rate of each train.

Findings

A series of digital flow control models, based on the time and space composition of passengers on trains with congested sections, has been designed and developed to scientifically calculate the number of passengers entering the station and provide an operational basis for operating companies to accurately control flow.

Originality/value

This study can analyze the section where the highest full load occurs, the composition of passengers in this section and when and where passengers board the train, based on the measured train full load rate data. Then, this paper combines the full load rate control index to perform reverse deduction to calculate the inbound volume time-sharing indicators of each station and redistribute the time-sharing indicators for each station according to the actual situation of the inbound volume of each line during the epidemic. Finally, form the specified full load rate index digital time-sharing passenger flow control scheme.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 19 February 2021

Hatice Beyza Sezer and Immaculate Kizito Namukasa

Many mathematical models have been shared to communicate about the COVID-19 outbreak; however, they require advanced mathematical skills. The main purpose of this study is to…

4830

Abstract

Purpose

Many mathematical models have been shared to communicate about the COVID-19 outbreak; however, they require advanced mathematical skills. The main purpose of this study is to investigate in which way computational thinking (CT) tools and concepts are helpful to better understand the outbreak, and how the context of disease could be used as a real-world context to promote elementary and middle-grade students' mathematical and computational knowledge and skills.

Design/methodology/approach

In this study, the authors used a qualitative research design, specifically content analysis, and analyzed two simulations of basic SIR models designed in a Scratch. The authors examine the extent to which they help with the understanding of the parameters, rates and the effect of variations in control measures in the mathematical models.

Findings

This paper investigated the four dimensions of sample simulations: initialization, movements, transmission, recovery process and their connections to school mathematical and computational concepts.

Research limitations/implications

A major limitation is that this study took place during the pandemic and the authors could not collect empirical data.

Practical implications

Teaching mathematical modeling and computer programming is enhanced by elaborating in a specific context. This may serve as a springboard for encouraging students to engage in real-world problems and to promote using their knowledge and skills in making well-informed decisions in future crises.

Originality/value

This research not only sheds light on the way of helping students respond to the challenges of the outbreak but also explores the opportunities it offers to motivate students by showing the value and relevance of CT and mathematics (Albrecht and Karabenick, 2018).

Details

Journal of Research in Innovative Teaching & Learning, vol. 14 no. 1
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 2 March 2021

Russell Harpring, Amin Maghsoudi, Christian Fikar, Wojciech D. Piotrowicz and Graham Heaslip

This study aims to describe the compounding factors in a complex emergency, which exacerbate a cholera epidemic among vulnerable populations due to supply chain disruptions. Basic…

3487

Abstract

Purpose

This study aims to describe the compounding factors in a complex emergency, which exacerbate a cholera epidemic among vulnerable populations due to supply chain disruptions. Basic needs such as food, medicine, water, sanitation and hygiene commodities are critical to reduce the incidence rate of cholera and control the spread of infection. Conflicts cause damage to infrastructure, displace vulnerable populations and restrict the flow of goods from both commercial and humanitarian organizations. This study assesses the underlying internal and external factors that either aggravate or mitigate the risk of a cholera outbreak in such settings, using Yemen as a case study.

Design/methodology/approach

This study adopts a system dynamics methodology to analyze factors that influence cholera outbreaks in the context of the Yemeni Civil War. A causal loop diagram with multiple components was constructed to represent the complexities of humanitarian situations that require critical decision-making. The model was built using data from humanitarian organizations, non-governmental organizations and practitioners, along with literature from academic sources. Variables in the model were confirmed through semi-structured interviews with a field expert.

Findings

Compounding factors that influenced the cholera outbreak in Yemen are visualized in a causal loop diagram, which can improve the understanding of relationships where numerous uncertainties exist. A strong link exists between humanitarian response and the level of infrastructure development in a country. Supply chains are affected by constraints deriving from the Yemeni conflict, further inhibiting the use of infrastructure, which limits access to basic goods and services. Aligning long-term development objectives with short-term humanitarian response efforts can create more flexible modes of assistance to prevent and control future outbreaks.

Research limitations/implications

The model focuses on the qualitative aspects of system dynamics to visualize the logistics and supply chain-related constraints that impact cholera prevention, treatment and control through humanitarian interventions. The resulting causal loop diagram is bounded by the Yemen context; thus, an extension of the model adapted for other contexts is recommended for further study.

Practical implications

This study presents a systematic view of dynamic factors existing in complex emergencies that have cause-and-effect relationships. Several models of cholera outbreaks have been used in previous studies, primarily focusing on the modes and mechanisms of transmission throughout a population. However, such models typically do not include other internal and external factors that influence the population and context at the site of an outbreak. This model incorporates those factors from a logistics perspective to address the distribution of in-kind goods and cash and voucher assistance.

Social implications

This study has been aligned with six of the United Nations Sustainable Development Goals (SDGs), using their associated targets in the model as variables that influence the cholera incidence rate. Recognizing that the SDGs are interlinked, as are the dynamic factors in complex humanitarian emergencies, the authors have chosen to take an interdisciplinary approach to consider social, economic and environmental factors that may be impacted by this research.

Originality/value

This paper provides an insight into the underlying inter-relations of internal and external factors present in the context of a cholera outbreak in a complex crisis. Supply chains for food; water, sanitation and hygiene; and health products are crucial to help prevent, control and treat an outbreak. The model exposes vulnerabilities in the supply chain, which may offer guidance for decision makers to improve resilience, reduce disruptions and decrease the severity of cholera outbreaks.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 11 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 13 August 2019

Yuejiang Li, H. Vicky Zhao and Yan Chen

With the popularity of the internet and the increasing numbers of netizens, tremendous information flows are generated daily by the intelligently interconnected individuals. The…

1508

Abstract

Purpose

With the popularity of the internet and the increasing numbers of netizens, tremendous information flows are generated daily by the intelligently interconnected individuals. The diffusion processes of different information are not independent, and they interact with and influence each other. Modeling and analyzing the interaction between correlated information play an important role in the understanding of the characteristics of information dissemination and better control of the information flows. This paper aims to model the correlated information diffusion process over the crowd intelligence networks.

Design/methodology/approach

This study extends the classic epidemic susceptible–infectious–recovered (SIR) model and proposes the SIR mixture model to describe the diffusion process of two correlated pieces of information. The whole crowd is divided into different groups with respect to their forwarding state of the correlated information, and the transition rate between different groups shows the property of each piece of information and the influences between them.

Findings

The stable state of the SIR mixture model is analyzed through the linearization of the model, and the stable condition can be obtained. Real data are used to validate the SIR mixture model, and the detailed diffusion process of correlated information can be inferred by the analysis of the parameters learned through fitting the real data into the SIR mixture model.

Originality/value

The proposed SIR mixture model can be used to model the diffusion of correlated information and analyze the propagation process.

Details

International Journal of Crowd Science, vol. 3 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 1 September 2020

Kevin Alvarez and Vladik Kreinovich

The current pandemic is difficult to model – and thus difficult to control. In contrast to the previous epidemics, whose dynamics were smooth and well described by the existing…

2737

Abstract

Purpose

The current pandemic is difficult to model – and thus difficult to control. In contrast to the previous epidemics, whose dynamics were smooth and well described by the existing models, the statistics of the current pandemic are highly oscillating. The purpose of this paper is to explain these oscillations and to see how this explanation can be used to fight the epidemic.

Design/methodology/approach

The authors use an analogy with economic systems.

Findings

The authors show that these oscillations can be explained if we take into account the disease’s long incubation period – as a result of which our control measures are determined by outdated data, showing number of infected people two weeks ago. To better control the pandemic, the authors propose to use the experience of economics, where also the effect of different measures can be observed only after some time. In the past, this led to wild oscillations of the economy, with rapid growth periods followed by devastating crises. In time, economists learned how to smooth the cycles and thus to drastically decrease the corresponding negative effects. The authors hope that this experience can help fight the pandemic.

Originality/value

To the best of our knowledge, this is the first explanation of the highly oscillatory nature of this epidemic’s dynamics.

Details

Asian Journal of Economics and Banking, vol. 4 no. 3
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 17 February 2023

Esen Andiç-Mortan and Cigdem Gonul Kochan

This study aims to focus on building a conceptual closed-loop vaccine supply chain (CLVSC) to decrease vaccine wastage and counterfeit/fake vaccines.

1187

Abstract

Purpose

This study aims to focus on building a conceptual closed-loop vaccine supply chain (CLVSC) to decrease vaccine wastage and counterfeit/fake vaccines.

Design/methodology/approach

Through a focused literature review, the framework for the CLVSC is described, and the system dynamics (SD) research methodology is used to build a causal loop diagram (CLD) of the proposed model.

Findings

In the battle against COVID-19, waste management systems have become overwhelmed, which has created negative environmental and extremely hazardous societal impacts. A key contributing factor is unused vaccine doses, shown as a source for counterfeit/fake vaccines. The findings identify a CLVSC design and transshipment operations to decrease vaccine wastage and the potential for vaccine theft.

Research limitations/implications

This study contributes to establishing a pandemic-specific VSC structure. The proposed model informs the current COVID-19 pandemic as well as potential future pandemics.

Social implications

A large part of the negative impact of counterfeit/fake vaccines is on human well-being, and this can be avoided with proper CLVSC.

Originality/value

This study develops a novel overarching SD CLD by integrating the epidemic model of disease transmission, VSC and closed-loop structure. This study enhances the policymakers’ understanding of the importance of vaccine waste collection, proper handling and threats to the public, which are born through illicit activities that rely on stolen vaccine doses.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 13 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 9 January 2024

Yadong Liu, Nathee Naktnasukanjn, Anukul Tamprasirt and Tanarat Rattanadamrongaksorn

Bitcoin (BTC) is significantly correlated with global financial assets such as crude oil, gold and the US dollar. BTC and global financial assets have become more closely related…

Abstract

Purpose

Bitcoin (BTC) is significantly correlated with global financial assets such as crude oil, gold and the US dollar. BTC and global financial assets have become more closely related, particularly since the outbreak of the COVID-19 pandemic. The purpose of this paper is to formulate BTC investment decisions with the aid of global financial assets.

Design/methodology/approach

This study suggests a more accurate prediction model for BTC trading by combining the dynamic conditional correlation generalized autoregressive conditional heteroscedasticity (DCC-GARCH) model with the artificial neural network (ANN). The DCC-GARCH model offers significant input information, including dynamic correlation and volatility, to the ANN. To analyze the data effectively, the study divides it into two periods: before and during the COVID-19 outbreak. Each period is then further divided into a training set and a prediction set.

Findings

The empirical results show that BTC and gold have the highest positive correlation compared with crude oil and the USD, while BTC and the USD have a dynamic and negative correlation. More importantly, the ANN-DCC-GARCH model had a cumulative return of 318% before the outbreak of the COVID-19 pandemic and can decrease loss by 50% during the COVID-19 pandemic. Moreover, the risk-averse can turn a loss into a profit of about 20% in 2022.

Originality/value

The empirical analysis provides technical support and decision-making reference for investors and financial institutions to make investment decisions on BTC.

Details

Asian Journal of Economics and Banking, vol. 8 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 20 March 2023

Md. Rabiul Awal, Md. Shakhawat Hossain, Tahmina Akter Arzin, Md. Imran Sheikh and Md. Enamul Haque

Online shopping around the world is growing exponentially, especially during the COVID-19 pandemic. This study aims to examine how an online customer's purchasing experience…

2830

Abstract

Purpose

Online shopping around the world is growing exponentially, especially during the COVID-19 pandemic. This study aims to examine how an online customer's purchasing experience influences his/her buying intention and willingness to believe in fraud news, as well as the ripple impact of satisfaction and trust, with gender as a moderator in an emerging economy during COVID-19.

Design/methodology/approach

Based on the underpinning of the stimulus-organism-behavior-consequence (SOBC) theory, the research model was developed, and collected data from 259 respondents using convenience samples technique. Next, the data were analyzed using partial least squares-based structural equation modeling (PLS-SEM), SPSS (Statistical Package for the Social Sciences) and Hayes Process Macro.

Findings

The study results confirmed that the online shopping experience (OSE) has positive impact on customers' satisfaction (CS), purchase intention (PI) and customer trust (CT); CS has positive effects on trust toward online shopping and their future product PI; future product PI significantly affects customers' propensity to believe and act on fraud news (PBAFN). The finding also states that gender moderates the relationships of CS to PI, OSE to PI and PI to PBAFN, but doesn't moderate the CT to PI relationship.

Originality/value

The study findings will assist policymakers and online vendors to win customers' hearts and minds' through confirming satisfaction, trust and a negative attitude toward fake news, which will lead to customer loyalty and the sustainable development of the industry. Finally, the limitations and future research directions are discussed.

Details

PSU Research Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2399-1747

Keywords

1 – 10 of 623