Search results

1 – 10 of 30
Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

24

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2022

Xiaoping Lin, Xiaoyan Li, Jiming Yao, Xianghong Li and Jianlin Xu

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible…

Abstract

Purpose

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible CC/NiS/a-NiS electrodes with self-supporting structure by loading hydrothermally synthesized a-NiS particles along with nano-NiS on carbon cloth by electroplating method.

Design/methodology/approach

The effects of current densities, temperatures and pH values on the loading amount and uniformity of the active substances during the plating process were investigated on the basis of optimization of surface morphology, crystalline structure and electrochemical evaluation as the cyclic voltammetry curves, constant current charge–discharge curves and AC impedance.

Findings

The a-NiS particles on CC/NiS/a-NiS were mostly covered by the plated nano-NiS, which behaved as a bulge and provided a larger specific surface area. The CC/NiS/a-NiS electrode prepared with the optimized parameter exhibited a specific capacitance of 115.13 F/g at a current density of 1 A/g and a Coulomb efficiency of 84% at 5 A/g, which is superior to that of CC/NiS electrode prepared by electroplating at a current density of 10 mA/cm2, a temperature of 55°C and a pH of 4, demonstrating its fast charge response of the electrode and potential application in wearable electronics.

Originality/value

This study provides an integrated solution for the development of specifically structured NiS-based electrode for supercapacitor with simple process, low cost and high electrochemical charge/discharge performance, and the simple and easy-to-use method is also applicable to other electrochemically active composites.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 March 2024

Malav R. Sanghvi, Karan W. Chugh and S.T. Mhaske

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the…

Abstract

Purpose

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the ferrocyanide used on resulting pigment properties is studied.

Design/methodology/approach

Prussian blue is commonly synthesized by direct or indirect methods, through iron salt and ferrocyanide/ferricyanide reactions. In this study, the direct, single-step process was pursued by dropwise addition of the ferrocyanide into ferric chloride (both as aqueous solutions). Two batches – (K-PB) and (Na-PB) – were prepared by using potassium ferrocyanide and sodium ferrocyanide, respectively. The development of pigment was confirmed by an identification test and characterized by spectroscopic techniques. Pigment properties were determined, and light fastness was observed for acrylic emulsion films incorporating dispersed pigment.

Findings

The two pigments differed mainly in elemental detection owing to the dissimilar ferrocyanide being used; IR spectroscopy where only (Na-PB) showed peaks indicating water molecules; and bleeding tendency where (K-PB) was water soluble whereas (Na-PB) was not. The pigment exhibited remarkable blue colour and good bleeding resistance in several solvents and showed no fading in 24 h of light exposure though oil absorption values were high.

Originality/value

This article is a comparative study of Prussian blue pigment properties obtained using different ferrocyanides. The dissimilarity in the extent of water solubility will influence potential applications as a colourant in paints and inks. K-PB would be advantageous in aqueous formulations to confer a blue colour without any dispersing aid but unfavourable in systems where other coats are water-based due to their bleeding tendency.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 November 2023

Peyman Aghdasi, Shayesteh Yousefi and Reza Ansari

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are…

66

Abstract

Purpose

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are studied.

Design/methodology/approach

The computed elastic properties based on DFT are used to develop a finite element (FE) model for the monolayer bismuthene in which the Bi-Bi bonds are simulated by beam elements. Furthermore, mass elements are used to model the Bi atoms. The developed FE model is used to compute Young's modulus of monolayer bismuthene. The model is then used to evaluate the buckling force and fundamental natural frequency of the monolayer bismuthene with different geometrical parameters.

Findings

Comparing the results of the FEM and DFT, it is shown that the proposed model can predict Young's modulus of the monolayer bismuthene with an acceptable accuracy. It is also shown that the influence of the vertical side length on the fundamental natural frequency of the monolayer bismuthene is not significant. However, vibrational characteristics of the bismuthene are significantly affected by the horizontal side length.

Originality/value

DFT and FEM are used to study the elastic, vibrational and buckling properties of the monolayer bismuthene. The developed model can be used to predict Young's modulus of the monolayer bismuthene accurately. Effect of the vertical side length on the fundamental natural frequency is negligible. However, vibrational characteristics are significantly affected by the horizontal side length.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 February 2024

Manager Rajdeo Singh, Aditya Prakash Kanth, Madhuri Sawant and Rajesh Ragde

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Abstract

Purpose

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Design/methodology/approach

In this paper, the authors reviewed current research on all possible utilities from household work to manufacturing of various products that are environmentally sustainable. The authors have presented some of their research on this materials and also exploration of hemp as an archaeological material based on the findings from wall paintings of Ellora caves.

Findings

There are references of hemp use in mixing with earthen/lime plaster of western Indian monuments. Around 1,500 years of Ellora’s earthen plaster, despite harsh climatic conditions, survived due to the presence of hemp in the plaster that adds durability, fibrosity and its capacity to ward off insects and control humidity. Furthermore, the outstanding quality of Cannabis as carbon sequestrant was harnessed by Indians of ancient times in Ellora mural paintings.

Research limitations/implications

This work discusses some relevant literature on the potential use of hempcrete aligned with Agenda 2030 of sustainable development goals.

Practical implications

There are several research going on in producing sustainable materials using hemp that have the least environmental impact and can provide eco-friendly solutions.

Social implications

The authors impress upon the readers about multifarious utility of the hemp and advices for exploration of this material to address many environmental issues.

Originality/value

This paper presents both review of the existing papers and some components coming directly from their laboratory investigations.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 26 March 2024

Sajad Pirsa and Fahime Purghorbani

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…

Abstract

Purpose

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.

Design/methodology/approach

Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.

Findings

Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.

Originality/value

Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 30