Search results

1 – 10 of 41
Article
Publication date: 14 March 2023

Lei Wan, Jian Xu, Yulai Li, Haiou Sun and Tao Zhang

The purpose of this paper is to improve the corrosion resistance of anodized 6063 Al alloy inertial air–water separator by means of silane technology and to investigate the effect…

219

Abstract

Purpose

The purpose of this paper is to improve the corrosion resistance of anodized 6063 Al alloy inertial air–water separator by means of silane technology and to investigate the effect of corrosion-generated surface roughness changes on aerodynamic performance.

Design/methodology/approach

The BTSE-KH560 double-layer silane film treatment technique is used to close micropores on the anodic oxide film surface. The microstructure of the coating is observed by scanning electron microscopy, the coating structure of the specimens is determined by X-ray diffraction (XPS) and the corrosion resistance is determined by electrochemical and salt-spray tests. Computational fluid dynamics is also used to calculate the effect of roughness and analyse the change in separator performance.

Findings

The silane film deposited on the surface of the anodic oxide film acts as a good seal against microporous defects on the surface of the anodic oxide film and reduces the surface roughness. Electrochemical and salt-spray tests show that the silane film improved the corrosion resistance of the anodized film. The roughness produced by the corrosion deteriorates the performance of the separator.

Originality/value

The porous structure of the anodized coating makes it easier for corrosive ions to enter the substrate and cause pitting corrosion. Therefore, in this study, the corrosion behaviour of the coating in the marine environment and its effect on aerodynamic performance are investigated using a BTSE-KH560 double-layer silane coating with a sealing effect.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 January 2024

Shuo Su, Xiong-Tao Zhu and Hong-Qiang Fan

This paper aims to study the effect of ultraviolet (UV) light on the corrosion behavior of BC550 weathering steel in simulated marine atmospheric environment.

Abstract

Purpose

This paper aims to study the effect of ultraviolet (UV) light on the corrosion behavior of BC550 weathering steel in simulated marine atmospheric environment.

Design/methodology/approach

The effect of UV light on the corrosion behavior of BC550 weathering steel in simulated marine atmospheric environments were investigated by the corrosion weight gain experiment, in situ electrochemical noise, scanning electron microscope and X-ray diffraction.

Findings

UV light accelerated the corrosion process of BC550 weathering steel in the simulated marine atmospheric environment during the first 168 h. The maximum influence factor of UV light was 0.32, and it was only 0.08 after 168 h of corrosion process.

Originality/value

As the extension of corrosion time, the thickness and density of the corrosion product layer increased, which weakened the acceleration effect of UV light.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 July 2023

Yunzhou Gu, Boyu Yuan and Liang Li

The purpose of this paper is to review the application of digital holography in studies of the corrosion of metallic materials.

Abstract

Purpose

The purpose of this paper is to review the application of digital holography in studies of the corrosion of metallic materials.

Design/methodology/approach

Digital holography is used for in situ observation of the dynamic processes at the electrode | electrolyte interface and on the electrode surface during the corrosion dissolution of metallic materials.

Findings

Digital holography is an effect method to in situ observe the corrosion processes, and it can provide a direct experimental foundation for studying the corrosion mechanism.

Originality/value

Even though there are several challenges, digital holography will play a significant role in studying corrosion processes.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 April 2023

Yongxiong Li, Junying Hu and Xiankang Zhong

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Abstract

Purpose

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Design/methodology/approach

In this study, electrochemical tests were conducted between 25 and 55 °C, and the surface morphology of the specimen was observed using scanning electron microscopy and three-dimensional photos. The composition of the oxide film was characterized by X-ray photoelectron spectroscopy (XPS).

Findings

Under the condition of 6 MPa simulated natural gas (15% H2), the content of S-containing compounds (FeS and FeSO4) in the corrosion products on the surface of the specimen decreases from 60.8% to 54.4%. This finding indicates that hydrogen permeation inhibits the metabolic processes of SRB in this environment. By comparing the hydrogen-uncharged specimen, it was found that under the condition of 6 MPa simulated natural gas (15% H2) hydrogen charging, the uniform corrosion on the X80 surface was weakened, and the protection of the oxide film on the specimen surface in this environment was better than that without hydrogen charging.

Originality/value

To the best of the authors’ knowledge, most of these existing studies have focused on the effect of hydrogen on the mechanical properties of materials and very little is known about corrosion behavior in the hydrogen environment. In this study, a self-designed small gas phase hydrogen charging device was used to study the X80 surface corrosion behavior in the environment of the H2-doped natural gas pipeline.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 April 2024

Yongjing Wang and Yingwei Liu

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be…

Abstract

Purpose

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be directly measured, this study aims to propose an improved particle swarm optimization (PSO) algorithm.

Design/methodology/approach

In traditional PSO algorithms, each particle’s historical optimal solution is compared with the global optimal solution in each iteration step, and the optimal solution is replaced with a certain probability to achieve the goal of jumping out of the local optimum. However, this will to some extent undermine the (true) optimal solution. In view of this, this study has improved the traditional algorithm: at each iteration of each particle, the historical optimal solution is not compared with the global optimal solution. Instead, after all particles have iterated, the optimal solution is selected and compared with the global optimal solution and then the optimal solution is replaced with a certain probability. This to some extent protects the global optimal solution.

Findings

The polarization curve plotted by this equation is in good agreement with the experimental values, which demonstrates the reliability of this algorithm and provides a new method for measuring electrochemical parameters.

Originality/value

This study has improved the traditional method, which has high accuracy and can provide great support for corrosion research.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 December 2023

Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao and Qingyuan Wang

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial…

Abstract

Purpose

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial reference basis for the development of high-performance carbide reinforced FeCrAl alloys with good mechanical and corrosion properties in the future.

Design/methodology/approach

Nano ZrC reinforced FeCrAl alloys were prepared by mechanical alloying and spark plasma sintering. Phases composition, tensile fractography, corrosion morphology and chemical composition of nano ZrC reinforced FeCrAl alloys were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Microhardness and tensile properties of nano ZrC reinforced FeCrAl alloys were investigated by mechanical testing machine and Vickers hardness tester. Electrochemical corrosion properties of nano ZrC reinforced FeCrAl alloys were investigated by electrochemical workstation in 3.5 wt.% NaCl solution.

Findings

The results showed that addition of nano ZrC can effectively improve the mechanical and corrosion properties. However, excessive nano ZrC could decrease the mechanical properties and reduce the corrosion resistance. In all the FeCrAl alloys, FeCrAl–0.6 wt.% ZrC alloy exhibits the optimum mechanical properties with an ultimate tensile strength, elongation and hardness of 990.7 MPa, 24.1% and 335.8 HV1, respectively, and FeCrAl–0.2 wt.% ZrC alloy has a lower corrosion potential (−0.179 V) and corrosion current density (2.099 µA/cm2) and larger pitting potential (0.497 V) than other FeCrAl–ZrC alloys, showing a better corrosion resistance.

Originality/value

Adding proper nano ZrC particles can effectively improve the mechanical and corrosion properties, while the excessive nano ZrC is harmful to the mechanical and corrosion properties of FeCrAl alloys, which provides an instruction to develop high-performance FeCrAl cladding materials.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 October 2023

Junyu Shi, Shengli Ling, Yinjie Kuang, Yonggang Tong, Yongle Hu and Dunying Deng

The purpose of this paper is to reveal the effect of microstructure on the corrosion behavior of CoCrNi alloy in 3.5 Wt.% NaCl solution.

Abstract

Purpose

The purpose of this paper is to reveal the effect of microstructure on the corrosion behavior of CoCrNi alloy in 3.5 Wt.% NaCl solution.

Design/methodology/approach

The as-cast CoCrNi alloy was prepared by arc melting, and the cold-rolled and annealed alloys were prepared by processing the as-cast alloy.

Findings

The experimental results showed that a protective passivation film was formed on the surfaces of these CoCrNi MEA, and the stability and compactness of alloys increased in the sequence of cold-rolled, as-cast and annealed CoCrNi alloys. The annealed CoCrNi alloys had the best pitting resistance.

Originality/value

This study proposes the effect of the microstructure of CoCrNi alloy on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 June 2023

Bin Wang, Wanbin Chen, Shan Gao and Dezhi Wang

This paper aims to prepare a composite film on LY12 aluminum (Al) alloy by immersing in dodecyl phosphate and cerium nitrate solution by self-assembling methods. The effect of…

Abstract

Purpose

This paper aims to prepare a composite film on LY12 aluminum (Al) alloy by immersing in dodecyl phosphate and cerium nitrate solution by self-assembling methods. The effect of dipping sequence in dodecyl phosphate and cerium nitrate solution on the corrosion resistance of the composite film is studied.

Design/methodology/approach

The corrosion resistance of the dodecyl phosphate/cerium composite film is investigated by electrochemical measurement and film composition analysis.

Findings

The dipping sequence in dodecyl phosphate and cerium nitrate solutions has a significant impact on the corrosion resistance of the composite film. It shows best corrosion resistance by first dipping in dodecyl phosphate and then dipping in cerium nitrate solution.

Originality/value

The research shown in this work lays a scientific basis of the film preparation for industrial applications in the future.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 November 2023

Dongdong Song, Wenxiang Qin, Qian Zhou, Dong Xu and Bo Zhang

The anticorrosion coatings used in marine and atmospheric environment are subjected to many environmental factors. And the aging failure has been puzzling researchers. The purpose…

Abstract

Purpose

The anticorrosion coatings used in marine and atmospheric environment are subjected to many environmental factors. And the aging failure has been puzzling researchers. The purpose of this study is to find the correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors.

Design/methodology/approach

The epoxy coatings were subjected to a one-year exposure in three typical marine atmospheres. Meanwhile, principal component analysis, linear regression and Spearman and gray correlation analysis were applied to quantify the environmental characteristics and establish correlations with the coating aging.

Findings

The results indicate that the coating will undergo macroscopic fading and chalking upon exposure to the marine atmosphere, while microscopic examination reveals holes, cracks and partial peeling. The adhesion performance and electrochemical properties of the coating deteriorated with prolonged exposure, coating aging mainly occurs with the generation of O-H bonds and the breakage of molecular chains such as C-N and C-O-C. The coating was most deeply aged after exposure to the Xisha, followed by Zhoushan and finally Qingdao. Environmental factors affect the photooxidative aging and hydrolytic degradation processes of coatings and thus coating aging. To further demonstrate the correlation between environmental factors and coating aging, principal component analysis was used. The correlation model between environmental factors and coating aging was subsequently obtained. The correlation model between the rate of coating adhesion loss (E) and the comprehensive evaluation parameter of environmental factors (Z) is expressed as E = 0.142 + 0.028Z. Meanwhile, the Spearman correlation analysis and gray correlation method were used to investigate the impact of each environmental factor on coating aging. Solar irradiation, relative humidity and wetting time have the highest correlation with coating aging, which are all above 0.8 and have the greatest influence on coating aging; wind speed and temperature have the smallest correlation with coating aging, which are about 0.6 and have the least influence on coating aging.

Originality/value

This paper establishes a correlation between typical marine environmental factors and coating aging performance, which is crucial for predicting the service life of other coatings in diverse environments.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 41