To read this content please select one of the options below:

Correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors

Dongdong Song (Key Laboratory of Energy Transfer and System of Power Station of Ministry of Education, North China Electric Power University, Beijing, China)
Wenxiang Qin (Key Laboratory of Energy Transfer and System of Power Station of Ministry of Education, North China Electric Power University, Beijing, China)
Qian Zhou (Key Laboratory of Energy Transfer and System of Power Station of Ministry of Education, North China Electric Power University, Beijing, China)
Dong Xu (Key Laboratory of Energy Transfer and System of Power Station of Ministry of Education, North China Electric Power University, Beijing, China)
Bo Zhang (School of Chemical Engineering and Technology, Sun Yat-Sen University, Shenzhen, China)

Anti-Corrosion Methods and Materials

ISSN: 0003-5599

Article publication date: 3 November 2023

Issue publication date: 20 November 2023

78

Abstract

Purpose

The anticorrosion coatings used in marine and atmospheric environment are subjected to many environmental factors. And the aging failure has been puzzling researchers. The purpose of this study is to find the correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors.

Design/methodology/approach

The epoxy coatings were subjected to a one-year exposure in three typical marine atmospheres. Meanwhile, principal component analysis, linear regression and Spearman and gray correlation analysis were applied to quantify the environmental characteristics and establish correlations with the coating aging.

Findings

The results indicate that the coating will undergo macroscopic fading and chalking upon exposure to the marine atmosphere, while microscopic examination reveals holes, cracks and partial peeling. The adhesion performance and electrochemical properties of the coating deteriorated with prolonged exposure, coating aging mainly occurs with the generation of O-H bonds and the breakage of molecular chains such as C-N and C-O-C. The coating was most deeply aged after exposure to the Xisha, followed by Zhoushan and finally Qingdao. Environmental factors affect the photooxidative aging and hydrolytic degradation processes of coatings and thus coating aging. To further demonstrate the correlation between environmental factors and coating aging, principal component analysis was used. The correlation model between environmental factors and coating aging was subsequently obtained. The correlation model between the rate of coating adhesion loss (E) and the comprehensive evaluation parameter of environmental factors (Z) is expressed as E = 0.142 + 0.028Z. Meanwhile, the Spearman correlation analysis and gray correlation method were used to investigate the impact of each environmental factor on coating aging. Solar irradiation, relative humidity and wetting time have the highest correlation with coating aging, which are all above 0.8 and have the greatest influence on coating aging; wind speed and temperature have the smallest correlation with coating aging, which are about 0.6 and have the least influence on coating aging.

Originality/value

This paper establishes a correlation between typical marine environmental factors and coating aging performance, which is crucial for predicting the service life of other coatings in diverse environments.

Keywords

Acknowledgements

The authors wish to acknowledgement the financial support from the Ministry of Industry and Information Technology of China (Grant No. MJ-2017-J-99), the National Natural Science Foundation of China (No. 51701055) and the Fundamental Research Funds for the Central Universities (2023MS011).

Declaration of competing interest: The authors declare that they have no conflict of interest.

Data availability: All the data included in this article are available upon request by contact the corresponding author.

Citation

Song, D., Qin, W., Zhou, Q., Xu, D. and Zhang, B. (2023), "Correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors", Anti-Corrosion Methods and Materials, Vol. 70 No. 6, pp. 547-563. https://doi.org/10.1108/ACMM-09-2023-2894

Publisher

:

Emerald Publishing Limited

Copyright © 2023, Emerald Publishing Limited

Related articles