Search results

1 – 10 of 858
Article
Publication date: 3 October 2023

Ning Zhang, Hong Zheng, Chi Yuan and Wenan Wu

This article aims to present a direct solution to handle linear constraints in finite element (FE) analysis without penalties or the Lagrange multipliers introduced.

Abstract

Purpose

This article aims to present a direct solution to handle linear constraints in finite element (FE) analysis without penalties or the Lagrange multipliers introduced.

Design/methodology/approach

First, the system of linear equations corresponding to the linear constraints is solved for the leading variables in terms of the free variables and the constants. Then, the reduced system of equilibrium equations with respect to the free variables is derived from the finite-dimensional virtual work equation. Finally, the algorithm is designed.

Findings

The proposed procedure is promising in three typical cases: (1) to enforce displacement constraints in any direction; (2) to implement local refinements by allowing hanging nodes from element subdivision and (3) to treat non-matching grids of distinct parts of the problem domain. The procedure is general and suitable for 3D non-linear analyses.

Research limitations/implications

The algorithm is fitted only to the Galerkin-based numerical methods.

Originality/value

The proposed procedure does not need Lagrange multipliers or penalties. The tangential stiffness matrix of the reduced system of equilibrium equations reserves positive definiteness and symmetry. Besides, many contemporary Galerkin-based numerical methods need to tackle the enforcement of the essential conditions, whose weak forms reduce to linear constraints. As a result, the proposed procedure is quite promising.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 April 2024

Jorge Morvan Marotte Luz Filho and Antonio Andre Novotny

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations…

Abstract

Purpose

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations based on compliance minimization under volume constraint suffers from numerous difficulties for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible unconstrained character of the optimum and parasitic effects for low densities in density-based approaches. This paper aims to propose an alternative approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading.

Design/methodology/approach

In order to overcome the above first two issues, a regularized formulation of the classical compliance minimization problem under volume constraint is adopted, which enjoys two important features: (a) it allows for imposing any feasible volume constraint and (b) the standard (original) formulation is recovered once the regularizing parameter vanishes. The resulting topology optimization problem is solved with the help of the topological derivative method, which naturally overcomes the above last issue since no intermediate densities (grey-scale) approach is necessary.

Findings

A novel and simple approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading is proposed. A set of benchmark examples is presented, showing not only the effectiveness of the proposed approach but also highlighting the role of the self-weight loading in the final design, which are: (1) a bridge structure is subject to pure self-weight loading; (2) a truss-like structure is submitted to an external horizontal force (free of self-weight loading) and also to the combination of self-weight and the external horizontal loading; and (3) a tower structure is under dominant self-weight loading.

Originality/value

An alternative regularized formulation of the compliance minimization problem that naturally overcomes the difficulties of dealing with self-weight dominant scenarios; a rigorous derivation of the associated topological derivative; computational aspects of a simple FreeFEM implementation; and three-dimensional numerical benchmarks of bridge, truss-like and tower structures.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Thiago Galdino Balista, Carlos Friedrich Loeffler, Luciano Lara and Webe João Mansur

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All…

Abstract

Purpose

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All techniques transform domain integrals into boundary integrals, despite using different principles to reach this purpose.

Design/methodology/approach

Comparisons here performed include the solution of eigenvalue and response by frequency scanning, analyzing many features that are not comprehensively discussed in the literature, as follows: the type of boundary conditions, suitable number of degrees of freedom, modal content, number of primitives in the multiple reciprocity method (MRM) and the requirement of internal interpolation points in techniques that use radial basis functions as dual reciprocity and direct interpolation.

Findings

Among the other aspects, this work can conclude that the solution of the eigenvalue and response problems confirmed the reasonable accuracy of the dual reciprocity boundary element method (DRBEM) only for the calculation of the first natural frequencies. Concerning the direct interpolation boundary element method (DIBEM), its interpolation characteristic allows more accessibility for solving more elaborate problems. Despite requiring a greater number of interpolating internal points, the DIBEM has presented higher-quality results for the eigenvalue and response problems. The MRM results were satisfactory in terms of accuracy just for the low range of frequencies; however, the neglected higher-order primitives impact the accuracy of the dynamic response as a whole.

Originality/value

There are safe alternatives for solving engineering stationary dynamic problems using the boundary element method (BEM), but there are no suitable comparisons between these different techniques. This paper presents the particularities and detailed comparisons approaching the accuracy of the three important BEM techniques, aiming at response and frequency evaluation, which are not found in the specialized literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 March 2023

Manjeet Kumar, Pradeep Kaswan, Nantu Sarkar, Xu Liu and Manjeet Kumari

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal…

Abstract

Purpose

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal generalized thermoelastic media.

Design/methodology/approach

The bulk waves are represented with Helmholtz potentials. The stress-free insulated and isothermal plane surfaces are taken into account. Rayleigh wave dispersion relation has been established and is found to be complex. Due to the presence of radicals, the dispersion equation is continuously computed as a complicated irrational expression. The dispersion equation is then converted into a polynomial equation that can be solved numerically for precise complex roots. The extra zeros in this polynomial equation are eliminated to yield the dispersion equation’s roots. These routes are then filtered for inhomogeneous wave propagation that decays with depth. To perform numerical computations, MATLAB software is used.

Findings

In this medium, only one mode of Rayleigh wave exists at both isothermal and insulated boundaries. The thermal factors of nonlocal generalized thermoelastic materials significantly influence the particle motion, attenuation and phase velocity of the Rayleigh wave.

Originality/value

Numerical examples are taken to examine how the thermal characteristics of materials affect the existing Rayleigh wave’s propagation characteristics. Graphical analysis is used to evaluate the behavior of particle motion (such as elliptical) both inside and at the isothermal (or insulated) flat surface of the medium under consideration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 September 2023

Sifeddine Abderrahmani

Among different types of engineering structures, plates play a significant role. Their analysis necessitates numerical modeling with finite elements, such as triangular…

Abstract

Purpose

Among different types of engineering structures, plates play a significant role. Their analysis necessitates numerical modeling with finite elements, such as triangular, quadrangular or sector plate elements, owing to the intricate geometrical shapes and applied loads. The scope of this study is the development of a new rectangular finite element for thin plate bending based on the strain approach using Airy's function. It is called a rectangular plate finite element using Airy function (RPFEUAF) and has four nodes. Each node had three degrees of freedom: one transverse displacement (w) and two normal rotations (x, y).

Design/methodology/approach

Equilibrium conditions are used to generate the interpolation functions for the fields of strain, displacements and stresses. The evolution of the Airy function solutions yielded the selection of these polynomial bi-harmonic functions. The variational principle and the analytical integration approach are used to evaluate the basic stiffness matrix.

Findings

The numerical findings for thin plates quickly approach the Kirchhoff solution. The results obtained are compared to the analytical solution based on Kirchhoff theory.

Originality/value

The efficiency of the strain based approach using Airy's function is confirmed, and the robustness of the presented element RPFEUAF is demonstrated. Because of this, the current element is more reliable, better suited for computations and especially intriguing for modeling this kind of structure.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 September 2023

Huseyin Tunc and Murat Sari

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Abstract

Purpose

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Design/methodology/approach

The parabolic AD equations are reduced to the nonhomogeneous elliptic system of partial differential equations by utilizing the Chebyshev spectral collocation method (ChSCM) in the temporal variable. The implicit-explicit local differential transform method (IELDTM) is constructed over two- and three-dimensional meshes using continuity equations of the neighbor representations with either explicit or implicit forms in related directions. The IELDTM yields an overdetermined or underdetermined system of algebraic equations solved in the least square sense.

Findings

The IELDTM has proven to have excellent convergence properties by experimentally illustrating both h-refinement and p-refinement outcomes. A distinctive feature of the IELDTM over the existing numerical techniques is optimizing the local spatial degrees of freedom. It has been proven that the IELDTM provides more accurate results with far fewer degrees of freedom than the finite difference, finite element and spectral methods.

Originality/value

This study shows the derivation, applicability and performance of the IELDTM for solving 2D and 3D advection-diffusion equations. It has been demonstrated that the IELDTM can be a competitive numerical method for addressing high-space dimensional-parabolic partial differential equations (PDEs) arising in various fields of science and engineering. The novel ChSCM-IELDTM hybridization has been proven to have distinct advantages, such as continuous utilization of time integration and optimized formulation of spatial approximations. Furthermore, the novel ChSCM-IELDTM hybridization can be adapted to address various other types of PDEs by modifying the theoretical derivation accordingly.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 September 2023

Lucas Silva and Alfredo Gay Neto

When establishing a mathematical model to simulate solid mechanics, considering realistic geometries, special tools are needed to translate measured data, possibly with noise…

Abstract

Purpose

When establishing a mathematical model to simulate solid mechanics, considering realistic geometries, special tools are needed to translate measured data, possibly with noise, into idealized geometrical entities. As an engineering application, wheel-rail contact interactions are fundamental in the dynamic modeling of railway vehicles. Many approaches used to solve the contact problem require a continuous parametric description of the geometries involved. However, measured wheel and rail profiles are often available as sets of discrete points. A reconstruction method is needed to transform discrete data into a continuous geometry.

Design/methodology/approach

The authors present an approximation method based on optimization to solve the problem of fitting a set of points with an arc spline. It consists of an initial guess based on a curvature function estimated from the data, followed by a least-squares optimization to improve the approximation. The authors also present a segmentation scheme that allows the method to increment the number of segments of the spline, trying to keep it at a minimal value, to satisfy a given error tolerance.

Findings

The paper provides a better understanding of arc splines and how they can be deformed. Examples with parametric curves and slightly noisy data from realistic wheel and rail profiles show that the approach is successful.

Originality/value

The developed methods have theoretical value. Furthermore, they have practical value since the approximation approach is better suited to deal with the reconstruction of wheel/rail profiles than interpolation, which most methods use to some degree.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 December 2022

Wang Jianhong and Ricardo A. Ramirez-Mendoza

This new paper aims to extend the authors’ previous contributions about open-loop aircraft flutter test to closed-loop aircraft flutter test by virtue of the proposed direct…

Abstract

Purpose

This new paper aims to extend the authors’ previous contributions about open-loop aircraft flutter test to closed-loop aircraft flutter test by virtue of the proposed direct data–driven strategy. After feeding back the output signal to the input and introducing one feedback controller in the adding feedback loop, two parts, i.e. unknown aircraft flutter model and unknown feedback controller, exist in this closed-loop aircraft flutter system, simultaneously, whose input and output are all corrupted with external noise. Because of the relations between aircraft flutter model parameters and the unknown aircraft model, direct data–driven identification is proposed to identify that aircraft flutter model, then some identification algorithms and their statistical analysis are given through the authors’ own derivations. As the feedback controller can suppress the aircraft flutter or guarantee the flutter response converge to one desired constant value, the direct data–driven control is applied to design that feedback controller only through the observed data sequence directly. Numerical simulation results have demonstrated the efficiency of the proposed direct data–driven strategy. Generally, during our new information age, direct data–driven strategy is widely applied around our living life.

Design/methodology/approach

First, consider one more complex closed loop stochastic aircraft flutter model, whose input–output are all corrupted with external noise. Second, for the identification problem of closed-loop aircraft flutter model parameters, new identification algorithm and some considerations are given to the corresponding direct data–driven identification. Third, to design that feedback controller, existing in that closed-loop aircraft flutter model, direct data–driven control is proposed to design the feedback controller, which suppresses the flutter response actively.

Findings

A novel direct data–driven strategy is proposed to achieve the dual missions, i.e. identification and control for closed-loop aircraft flutter test. First, direct data–driven identification is applied to identify that unknown aircraft flutter model being related with aircraft flutter model parameters identification. Second, direct data–driven control is proposed to design that feedback controller.

Originality/value

To the best of the authors’ knowledge, this new paper extends the authors’ previous contributions about open-loop aircraft flutter test to closed-loop aircraft flutter test by virtue of the proposed direct data–driven strategy. Consider the identification problem of aircraft flutter model parameters within the presented closed loop environment, direct data–driven identification algorithm is proposed to achieve the identification goal. Direct data–driven control is proposed to design the feedback controller, i.e. only using the observed data to design the feedback controller.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 August 2023

Biao Liu, Qiao Wang, Y.T. Feng, Zongliang Zhang, Quanshui Huang, Wenxiang Tian and Wei Zhou

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method…

Abstract

Purpose

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method (LIBEM).

Design/methodology/approach

Due to considering the heat source, domain integral is generated in the traditional heat conduction boundary integral equation (BIE), which will counteract the well-known merit of the BEM, namely, boundary-only discretization. To avoid volume discretization, the enhanced BEM, the LIBEM with dimension reduction property is introduced to transfer the domain integral into line integrals. Besides, owing to the unsatisfactory performance of the LIBEM when it comes to large-scale structures requiring massive computation, the FMM-accelerated LIBEM (FM-LIBEM) is proposed to improve the computation efficiency further.

Findings

Assuming N and M are the numbers of nodes and integral lines, respectively, the FM-LIBEM can reduce the time complexity from O(NM) to about O(N+ M), and a full discussion and verification of the advantage are done based on numerical examples under heat conduction.

Originality/value

(1) The LIBEM is applied to 3D heat conduction analysis with heat source. (2) The domain integrals can be transformed into boundary integrals with straight line integrals by the LIM. (3) A FM-LIBEM is proposed and can reduce the time complexity from O(NM) to O(N+ M). (4) The FM-LIBEM with high computational efficiency is exerted to solve 3D heat conduction analysis with heat source in massive computation successfully.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Xin Meng, Qingyang Ren, Songqiang Xiao, Bin Chen and Hongfei Li

The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of…

Abstract

Purpose

The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of anchor cable subjected to tension.

Design/methodology/approach

ABAQUS numerical software is applied to construct the numerical models of tension-type anchor cables with different diameters. Through explicit contact, the characteristics of contact between grouting body-anchor cable and grouting body-rock mass are determined. Confining pressure is applied to the model through surface pressure, and drawing force is applied to the model by displacement loading so as to simulate the tension process of the anchor cable.

Findings

The results show that the stress is transmitted in both axial and radial directions in the anchorage section and distributed in a cone. The shear stress in the grouting body is unevenly distributed, and its peak value increases with the rise in confining pressure and anchor cable diameter. The stress characteristics of torque and axial force are basically consistent and evenly distributed in the free section; they gradually decrease in the anchorage section. Due to the tension-torsion coupling effect, the internal stress characteristics of the anchor cable structure vary. On average, the anchorage performance of each anchor cable model is improved by 6.19%.

Originality/value

The proposed method of numerical modelling is effective in addressing the interface contact between the anchor cable and the grouting body and in solving the problem with convergence of calculation. Compared with the indoor test, this method is more suited to collecting the internal mechanical data of the anchor body.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 858