Search results

1 – 10 of over 15000
Open Access
Article
Publication date: 29 October 2021

Subramanian Visweswaran

The purpose of this article is to determine necessary and sufficient conditions in order that (D, K) to be an S-accr pair, where D is an integral domain and K is a field which…

1532

Abstract

Purpose

The purpose of this article is to determine necessary and sufficient conditions in order that (D, K) to be an S-accr pair, where D is an integral domain and K is a field which contains D as a subring and S is a multiplicatively closed subset of D.

Design/methodology/approach

The methods used are from the topic multiplicative ideal theory from commutative ring theory.

Findings

Let S be a strongly multiplicatively closed subset of an integral domain D such that the ring of fractions of D with respect to S is not a field. Then it is shown that (D, K) is an S-accr pair if and only if K is algebraic over D and the integral closure of the ring of fractions of D with respect to S in K is a one-dimensional Prüfer domain. Let D, S, K be as above. If each intermediate domain between D and K satisfies S-strong accr*, then it is shown that K is algebraic over D and the integral closure of the ring of fractions of D with respect to S is a Dedekind domain; the separable degree of K over F is finite and K has finite exponent over F, where F is the quotient field of D.

Originality/value

Motivated by the work of some researchers on S-accr, the concept of S-strong accr* is introduced and we determine some necessary conditions in order that (D, K) to be an S-strong accr* pair. This study helps us to understand the behaviour of the rings between D and K.

Details

Arab Journal of Mathematical Sciences, vol. 29 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 7 August 2017

Qiao Wang, Wei Zhou, Yonggang Cheng, Gang Ma and Xiaolin Chang

Domain integrals, known as volume potentials in 3D elasticity problems, exist in many boundary-type methods, such as the boundary element method (BEM) for inhomogeneous partial…

Abstract

Purpose

Domain integrals, known as volume potentials in 3D elasticity problems, exist in many boundary-type methods, such as the boundary element method (BEM) for inhomogeneous partial differential equations. The purpose of this paper is to develop an accurate and reliable technique to effectively evaluate the volume potentials in 3D elasticity problems.

Design/methodology/approach

An adaptive background cell-based domain integration method is proposed for treatment of volume potentials in 3D elasticity problems. The background cells are constructed from the information of the boundary elements based on an oct-tree structure, and the domain integrals are evaluated over the cells rather than volume elements. The cells that contain the boundary elements can be subdivided into smaller sub-cells adaptively according to the sizes and levels of the boundary elements. The fast multipole method (FMM) is further applied in the proposed method to reduce the time complexity of large-scale computation.

Findings

The method is a boundary-only discretization method, and it can be applied in the BEM easily. Much computational time is saved by coupling with the FMM. Numerical examples demonstrate the accuracy and efficiency of the proposed method..

Originality/value

Boundary elements are used to create adaptive background cells, and domain integrals are evaluated over the cells rather than volume elements. Large-scale computation is made possible by coupling with the FMM.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Thiago Galdino Balista, Carlos Friedrich Loeffler, Luciano Lara and Webe João Mansur

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All…

Abstract

Purpose

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All techniques transform domain integrals into boundary integrals, despite using different principles to reach this purpose.

Design/methodology/approach

Comparisons here performed include the solution of eigenvalue and response by frequency scanning, analyzing many features that are not comprehensively discussed in the literature, as follows: the type of boundary conditions, suitable number of degrees of freedom, modal content, number of primitives in the multiple reciprocity method (MRM) and the requirement of internal interpolation points in techniques that use radial basis functions as dual reciprocity and direct interpolation.

Findings

Among the other aspects, this work can conclude that the solution of the eigenvalue and response problems confirmed the reasonable accuracy of the dual reciprocity boundary element method (DRBEM) only for the calculation of the first natural frequencies. Concerning the direct interpolation boundary element method (DIBEM), its interpolation characteristic allows more accessibility for solving more elaborate problems. Despite requiring a greater number of interpolating internal points, the DIBEM has presented higher-quality results for the eigenvalue and response problems. The MRM results were satisfactory in terms of accuracy just for the low range of frequencies; however, the neglected higher-order primitives impact the accuracy of the dynamic response as a whole.

Originality/value

There are safe alternatives for solving engineering stationary dynamic problems using the boundary element method (BEM), but there are no suitable comparisons between these different techniques. This paper presents the particularities and detailed comparisons approaching the accuracy of the three important BEM techniques, aiming at response and frequency evaluation, which are not found in the specialized literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2023

Biao Liu, Qiao Wang, Y.T. Feng, Zongliang Zhang, Quanshui Huang, Wenxiang Tian and Wei Zhou

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method…

Abstract

Purpose

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method (LIBEM).

Design/methodology/approach

Due to considering the heat source, domain integral is generated in the traditional heat conduction boundary integral equation (BIE), which will counteract the well-known merit of the BEM, namely, boundary-only discretization. To avoid volume discretization, the enhanced BEM, the LIBEM with dimension reduction property is introduced to transfer the domain integral into line integrals. Besides, owing to the unsatisfactory performance of the LIBEM when it comes to large-scale structures requiring massive computation, the FMM-accelerated LIBEM (FM-LIBEM) is proposed to improve the computation efficiency further.

Findings

Assuming N and M are the numbers of nodes and integral lines, respectively, the FM-LIBEM can reduce the time complexity from O(NM) to about O(N+ M), and a full discussion and verification of the advantage are done based on numerical examples under heat conduction.

Originality/value

(1) The LIBEM is applied to 3D heat conduction analysis with heat source. (2) The domain integrals can be transformed into boundary integrals with straight line integrals by the LIM. (3) A FM-LIBEM is proposed and can reduce the time complexity from O(NM) to O(N+ M). (4) The FM-LIBEM with high computational efficiency is exerted to solve 3D heat conduction analysis with heat source in massive computation successfully.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2005

Ron Cacioppe and Mark G. Edwards

The growing interest in developing and applying “integral” approaches to organisations has been accompanied by a corresponding increase in different ways of interpreting this…

2359

Abstract

Purpose

The growing interest in developing and applying “integral” approaches to organisations has been accompanied by a corresponding increase in different ways of interpreting this term. This article aims to present a set of criteria to help in defining the varieties of integral approaches to the study of organisations.

Design/methodology/approach

These criteria are derived from Ken Wilber's integral framework. The constitutive elements of Wilber's multi‐paradigm framework are used to develop a typology that honours the many forms that integral approaches can take.

Findings

It is proposed that the key criteria for assessing integral approaches to organisational life are: the structural focus, the engagement with process, and the emphasis on spirituality or essential purpose. Four type categories result from applying the structural criteria. These range from a general type that utilises broadly holistic concepts through to type which employs the detailed application of developmental quadrant and level concepts that formally define the integral approach as conceived by Ken Wilber. The engagement and spirituality criteria are additional enriching criteria that establish the integrity of the methods and purposes used in truly integral approaches.

Originality/value

The proposed typology will help in understanding how different authors, researchers and practitioners represent and apply the term “integral” within organisational contexts.

Details

Journal of Organizational Change Management, vol. 18 no. 3
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 1 February 1996

C. Shu, Y.T. Chew, B.C. Khoo and K.S. Yeo

The global methods of generalized differential quadrature (GDQ) andgeneralized integral quadrature (GIQ) are applied to solve three‐dimensional,incompressible, laminar boundary…

Abstract

The global methods of generalized differential quadrature (GDQ) and generalized integral quadrature (GIQ) are applied to solve three‐dimensional, incompressible, laminar boundary layer equations. The streamwise and crosswise velocity components are taken as the dependent variables. The normal velocity is obtained by integrating the continuity equation along the normal direction where the integral is approximated by GIQ approach with high order of accuracy. All the spatial derivatives are discretized by a GDQ scheme. After spatial discretization, the resultant ordinary differential equations are solved by the 4‐stage Runge—Katta scheme. Application of GDQ—GIQ approach to a test problem demonstrated that accurate numerical results can be obtained using just a few grid points.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2003

B.W. Clark and D.C. Anderson

The penalty boundary method (PBM) is a new method for performing finite element analysis using a regular overlapping mesh that does not have to coincide with the geometric…

1070

Abstract

The penalty boundary method (PBM) is a new method for performing finite element analysis using a regular overlapping mesh that does not have to coincide with the geometric boundaries. The PBM uses CAD solid geometry directly to generate element matrix equations and apply boundary conditions, removing the need for a separate representation of the geometry. The preliminary results show that the PBM can significantly reduce the time and manual intervention required to prepare finite element models and perform analyses. This paper presents the PBM approach for representing the problem domain on an overlapping mesh that results in a more traditional method for applying natural boundary conditions.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1995

D. OMERAGIĆ and P.P. SILVESTER

Accurate numerical differentiation of approximate data by methods based on Green's second identity often involves singular or nearly singular integrals over domains or their…

Abstract

Accurate numerical differentiation of approximate data by methods based on Green's second identity often involves singular or nearly singular integrals over domains or their boundaries. This paper applies the finite part integration concept to evaluate such integrals and to generate suitable quadrature formulae. The weak singularity involved in first derivatives is removable; the strong singularities encountered in computing higher derivatives can be reduced. To find derivatives on or near the edge of the integration region, special treatment of boundary integrals is required. Values of normal derivative at points on the edge are obtainable by the method described. Example results are given for derivatives of analytically known functions, as well as results from finite element analysis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 26 August 2014

Luis Godinho and Fernando Branco

A number of works have been published in the scientific literature proposing the solution of heat diffusion problems by first transforming the relevant partial differential…

Abstract

Purpose

A number of works have been published in the scientific literature proposing the solution of heat diffusion problems by first transforming the relevant partial differential equation to the frequency domain. The purpose of this paper is to present a mesh-free strategy to assess transient heat propagation in the frequency domain, also allowing incorporating initial non-zero conditions.

Design/methodology/approach

The strategy followed here is based in Kansa's method, using the MQ RBF as a basis function. The resulting method is truly mesh-free, and does not require any domain or boundary integrals to be evaluated. The definition of good values for the free parameter of the MQ RBF is also addressed.

Findings

The strategy was found to be accurate in the calculation of both frequency and time-domain responses. The time evolution of the temperature considering an initial non-uniform distribution of temperatures compared well with a standard time-marching algorithm, based on an implicit Crank-Nicholson implementation. It was possible to calculate frequency-dependent values for the free parameter of the radial basis function.

Originality/value

As far as the authors are aware, previous implementations of the frequency domain heat transfer approach required domain integrals to be evaluated in order to implement non-zero initial conditions. This is totally avoided with the present formulation. Additionally, the method is truly mesh-free, accurate and does not require any element or background mesh to be defined.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 May 2008

Matjaž Ramšak and Leopold Škerget

This paper aims to develop a multidomain boundary element method (BEM) for modeling 2D complex turbulent thermal flow using low Reynolds two‐equation turbulence models.

Abstract

Purpose

This paper aims to develop a multidomain boundary element method (BEM) for modeling 2D complex turbulent thermal flow using low Reynolds two‐equation turbulence models.

Design/methodology/approach

The integral boundary domain equations are discretised using mixed boundary elements and a multidomain method also known as a subdomain technique. The resulting system matrix is an overdetermined, sparse block banded and solved using a fast iterative linear least squares solver.

Findings

The simulation of a turbulent flow over a backward step is in excellent agreement with the finite volume method using the same turbulent model. A grid consisting of over 100,000 elements could be solved in the order of a few minutes using a 3.0 Ghz P4 and 1 GB memory indicating good efficiency.

Originality/value

The paper shows, for the first time, that the BEM is applicable to thermal flows using k‐ε.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 15000