Search results

1 – 10 of over 2000
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1987

Zbigniew Mańko

While calculating internal forces of a structure resulting from temperature it is necessary to know thermal conduction and what goes hand in hand to determine temperature…

Abstract

While calculating internal forces of a structure resulting from temperature it is necessary to know thermal conduction and what goes hand in hand to determine temperature distribution at various points of the analysed structures. Finite strip method (FSM) is very suitable for the analysis of thermal conduction, heating, heat and temperature distribution in engineering structures, especially rectangular of identical edge conditions. The paper presents several examples of FSM application for the analysis of conduction and heat and temperature distribution for various types of engineering structures which can appear, among others, while welding several joined elements with welds made at specified speed as linear and point welds. Bars, shields, square and rectangular plates, steel orthotropic plates, steel and combined girders (steel‐concrete), box girders subject to various loads connected with heat and temperature (loaded with temperature, non‐uniformly heated surface). The obtained results may be useful in engineering practice for determining actual temperature and load capacity in individual elements of the construction.

Details

Engineering Computations, vol. 4 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 21 September 2023

Sifeddine Abderrahmani

Among different types of engineering structures, plates play a significant role. Their analysis necessitates numerical modeling with finite elements, such as triangular…

Abstract

Purpose

Among different types of engineering structures, plates play a significant role. Their analysis necessitates numerical modeling with finite elements, such as triangular, quadrangular or sector plate elements, owing to the intricate geometrical shapes and applied loads. The scope of this study is the development of a new rectangular finite element for thin plate bending based on the strain approach using Airy's function. It is called a rectangular plate finite element using Airy function (RPFEUAF) and has four nodes. Each node had three degrees of freedom: one transverse displacement (w) and two normal rotations (x, y).

Design/methodology/approach

Equilibrium conditions are used to generate the interpolation functions for the fields of strain, displacements and stresses. The evolution of the Airy function solutions yielded the selection of these polynomial bi-harmonic functions. The variational principle and the analytical integration approach are used to evaluate the basic stiffness matrix.

Findings

The numerical findings for thin plates quickly approach the Kirchhoff solution. The results obtained are compared to the analytical solution based on Kirchhoff theory.

Originality/value

The efficiency of the strain based approach using Airy's function is confirmed, and the robustness of the presented element RPFEUAF is demonstrated. Because of this, the current element is more reliable, better suited for computations and especially intriguing for modeling this kind of structure.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 February 2021

J.N. Reddy, Matthew Martinez and Praneeth Nampally

The purpose of this study is to extend a novel numerical method proposed by the first author, known as the dual mesh control domain method (DMCDM), for the solution of linear…

Abstract

Purpose

The purpose of this study is to extend a novel numerical method proposed by the first author, known as the dual mesh control domain method (DMCDM), for the solution of linear differential equations to the solution of nonlinear heat transfer and like problems in one and two dimensions.

Design/methodology/approach

In the DMCDM, a mesh of finite elements is used for the approximation of the variables and another mesh of control domains for the satisfaction of the governing equation. Both meshes fully cover the domain but the nodes of the finite element mesh are inside the mesh of control domains. The salient feature of the DMCDM is that the concept of duality (i.e. cause and effect) is used to impose boundary conditions. The method possesses some desirable attributes of the finite element method (FEM) and the finite volume method (FVM).

Findings

Numerical results show that he DMCDM is more accurate than the FVM for the same meshes used. Also, the DMCDM does not require the use of any ad hoc approaches that are routinely used in the FVM.

Originality/value

To the best of the authors’ knowledge, the idea presented in this work is original and novel that exploits the best features of the best competing methods (FEM and FVM). The concept of duality is used to apply gradient and mixed boundary conditions that FVM and its variant do not.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 March 2012

Sandeep Singh, Kamlesh Kulkarni, Ramesh Pandey and Harpreet Singh

The purpose of this paper is to present elastic buckling behaviour of simply supported and clamped thin rectangular isotropic plates having central circular cutouts subjected to…

Abstract

Purpose

The purpose of this paper is to present elastic buckling behaviour of simply supported and clamped thin rectangular isotropic plates having central circular cutouts subjected to uniaxial partial edge compression. Analysis is carried out for four different kinds of partial edge compression and it is extended to study the effect of aspect ratio of plate on buckling load.

Design/methodology/approach

A finite element method technique is used in the current work to solve the buckling problem of plate using eight node quadrilateral element and plate kinematics based on first order shear deformation theory. Results obtained from finite element analysis are first validated for isotropic square plates, without cutouts, subjected to uniaxial partial edge compression with some earlier published literature.

Findings

From the current work it is concluded that the buckling strength of square plates is highly influenced by partial edge compression, as compared to plate subjected to uniform edge compression; but with increase in aspect ratio, influence of partial edge compression on plate buckling load decreases.

Originality/value

This paper usefully shows how partial edge compression of plates affects the buckling strength of plate having circular cutouts. Generally, simply supported plates subjected uniaxial partial edge compression of Type I and Type III are found to be stronger than plates subjected to partial edge compression Type II and Type IV, respectively.

Details

Journal of Engineering, Design and Technology, vol. 10 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3544

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1668

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1995

L. Jiang and M.W. Chernuka

A stiffened shell element is presented for geometricallynon‐linear analysis of eccentrically stiffened shell structures.Modelling with this element is more accurate than with the…

Abstract

A stiffened shell element is presented for geometrically non‐linear analysis of eccentrically stiffened shell structures. Modelling with this element is more accurate than with the traditional equivalent orthotropic plate element or with lumping stiffeners. In addition, mesh generation is easier than with the conventional finite element approach where the shell and beam elements are combined explicitly to represent stiffened structures. In the present non‐linear finite element procedure, the tangent stiffness matrix is derived using the updated Lagrangian formulation and the element strains, stresses, and internal force vectors are updated employing a corotational approach. The non‐vectorial characteristic of large rotations is taken into account. This stiffened shell element formulation is ideally suited for implementation into existing linear finite element programs and its accuracy and effectiveness have been demonstrated in several numerical examples.

Details

Engineering Computations, vol. 12 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 April 2020

Mohammad Rezaiee-Pajand, Nima Gharaei-Moghaddam and Mohammadreza Ramezani

This paper aims to propose a new robust membrane finite element for the analysis of plane problems. The suggested element has triangular geometry. Four nodes and 11 degrees of…

Abstract

Purpose

This paper aims to propose a new robust membrane finite element for the analysis of plane problems. The suggested element has triangular geometry. Four nodes and 11 degrees of freedom (DOF) are considered for the element. Each of the three vertex nodes has three DOF, two displacements and one drilling. The fourth node that is located inside the element has only two translational DOF.

Design/methodology/approach

The suggested formulation is based on the assumed strain method and satisfies both compatibility and equilibrium conditions within each element. This establishment results in higher insensitivity to the mesh distortion. Enforcement of the equilibrium condition to the assumed strain field leads to considerably high accuracy of the developed formulation.

Findings

To show the merits of the suggested plane element, its different properties, including insensitivity to mesh distortion, particularly under transverse shear forces, immunities to the various locking phenomena and convergence of the element are studied. The obtained results demonstrate the superiority of the suggested element compared with many of the available robust membrane elements.

Originality/value

According to the attained results, the proposed element performs better than the well-known displacement-based elements such as linear strain triangular element, Q4 and Q8 and even is comparable with robust modified membrane elements.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 June 2021

Faiçal Boussem, Abderahim Belounar and Lamine Belounar

This paper aims to describe the formulation of a new finite element by assuming the strain field rather than the displacement field and by using the Reissner–Mindlin plate theory…

Abstract

Purpose

This paper aims to describe the formulation of a new finite element by assuming the strain field rather than the displacement field and by using the Reissner–Mindlin plate theory for the free vibration analysis of bending plates. This quadrilateral element consists of four-nodes and twelve degrees of freedom. The suggested element is based on assumed functions of the strain field that satisfy the compatibility equation.

Design/methodology/approach

After the proposition of the new element, several numerical tests for plates with regular and distorted meshes are presented to assess the performance of the new element. In addition, a parametric study is carried out to analyze the effects of biaxial loads on the natural frequencies of square plates with various boundary conditions. Detailed discussions are proposed after each benchmark problem.

Findings

The formulated element has verified the shear locking test and passes the patch test. The obtained results from the developed element show an excellent accuracy and fast convergence, and the natural frequencies are in excellent agreement when compared with analytical and other available numerical solutions.

Originality/value

The present element is simple in its formulation and has been proven to be applicable to thin or thick plate situations with sufficient accuracy. This element with full integration is free from shear locking, however, the numerical results provided by the standard four-node plate element R4 element show locking phenomena in thin plates. In addition to these features, the imposition of the compatibility conditions and the rigid body modes allow obtaining a finite element with higher-order terms for displacements field, which can increase the performance of the finite elements.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 2000