Search results

1 – 10 of 816
Article
Publication date: 25 January 2024

Guibin Tan, Jinfu Li, Cheng Zhou, Ziwei Luo, Xing Huang and Fei Guo

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the…

Abstract

Purpose

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the influence of different eccentric forms, eccentricity, rotational speed and other factors on the performance of the rotary lip seal.

Design/methodology/approach

A numerical simulation model for high-speed eccentric rotary lip seals has been developed based on the theory of elastic hydrodynamic lubrication. This model comprehensively considers the coupling of multiple physical fields, including interface hydrodynamics, macroscopic solid mechanics and surface microscopic contact mechanics, under the operating conditions of rotary lip seals. The model takes into account eccentricity and uses the hazardous cross-sectional method to quantitatively predict sealing performance parameters, such as leakage rate and friction force.

Findings

Eccentricity has a large impact on lip seal performance; lips are more susceptible to wear failure under static eccentricity and to leakage failure under dynamic eccentricity.

Originality/value

This study provides a new idea for the design of rotary lip seal considering eccentricity, which is of guiding significance for the engineering application of rotary lip seal.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 January 2015

Ahmad Soleymani and Alireza Toloei

– The purpose of this research was to analyze application effects of the stable frozen orbit conditions in the spacecraft Orbital Maintenance Maneuver (OMM) reduction.

Abstract

Purpose

The purpose of this research was to analyze application effects of the stable frozen orbit conditions in the spacecraft Orbital Maintenance Maneuver (OMM) reduction.

Design/methodology/approach

One challenge in implementing these motions is maintaining the relations as it experiences orbital perturbations (zonal harmonics), most notably due to the non-spherical Earth. A natural phenomenon exists called a frozen orbit, for which the orbital elements: argument of perigee (ω) and eccentricity (e) remain virtually fixed over extended periods of time.

Findings

Simulation results show that, using stable frozen orbit condition results in considerable propellant saving, decreased OMM, increase of accuracy position errors and thus performance improvement of the spacecraft for orbiter mission is preferable. So, from among three proposed theories, the Brouwer–Hori theory has provided better accuracy and more stable conditions in the frozen orbit.

Practical implications

Simulation algorithm has been achieved to solve this problem by extracting and combining the equations that govern the frozen conditions with the tangential forces (ΔV) equations for orbit correction.

Originality/value

In all studies with content of harmonic perturbation effects on the spacecraft motion dynamics, main goal is to obtain a solution for optimization of the operation process, so that overshadowed mission costs. The case studies about this aim, mostly to the trajectory parameters optimization by considering the vehicle orbital conditions under various control methods are formed. While in this regards, the intrinsic properties of stable Earth orbits and using them effectively is less than to analyse the problems is considered.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 14 December 2023

Swapnil Narayan Rajmane and Shaligram Tiwari

This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and…

Abstract

Purpose

This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and Reynolds number (Re) of 425, based on the diameter of normal artery and average velocity of inlet pulse, was considered.

Design/methodology/approach

Finite volume method based ANSYS Fluent 20.1 was used for solving the governing equations of three-dimensional, laminar, incompressible and non-Newtonian blood flow. A high-quality grid with sufficient refinement was generated using ICEM CFD 20.1. The time-averaged flow field was captured to investigate the effect of severity and eccentricity on the lumen flow characteristics.

Findings

The results show that an increase in interspacing between blockages brings shear layer instability within the region between two blockages. The velocity profile and wall shear stress distribution are found to be majorly influenced by eccentricity. On the other hand, their peak magnitude is found to be primarily influenced by severity. Results have also demonstrated that the presence of eccentricity in stenosis would assist in flow development.

Originality/value

Variation in severity and interspacing was considered with a provision of eccentricity equal to 10% of diameter. Eccentricity refers to the offset between the centreline of stenosis and the centreline of normal artery. For the two blockages, severity values of 40% and 60% based on diameter reduction were permuted, giving rise to four combinations. For each combination, three values of interspacing in the multiples of normal artery diameter (D), viz. 4D, 6D and 8D were considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2007

Maged A.I. El‐Shaarawi, Esmail M.A. Mokheimer and Ahmad Jamal

To explore the effect of the annulus geometrical parameters on the induced flow rate and the heat transfer under the conjugate (combined conduction and free convection) thermal…

Abstract

Purpose

To explore the effect of the annulus geometrical parameters on the induced flow rate and the heat transfer under the conjugate (combined conduction and free convection) thermal boundary conditions with one cylinder heated isothermally while the other cylinder is kept at the inlet fluid temperature.

Design/methodology/approach

A finite‐difference algorithm has been developed to solve the bipolar boundary‐layer equations for the conjugate laminar free convection heat transfer in vertical eccentric annuli.

Findings

Numerical results are presented for a fluid of Prandtl number, Pr=0.7 in eccentric annuli. The geometry parameters of NR2 and E (the fluid‐annulus radius ratio and the eccentricity, respectively) have considerable effects on the results.

Practical implications

Applications of the obtained results can be of value in the heat‐exchanger industry, in cooling of underground electric cables, and in cooling small vertical electric motors and generators.

Originality/value

The paper presents results that are not available in the literature for the problem of conjugate laminar free convection in open‐ended vertical eccentric annular channels. Geometry effects having been investigated by considering fluid annuli having radii ratios NR2=0.1 and 0.3, 0.5 and 0.7 and four values of the eccentricity E=0.1, 0.3, 0.5 and 0.7. Moreover, practical ranges of the solid‐fluid conductivity ratio (KR) and the wall thicknesses that are commonly available in pipe standards have been investigated. Such results are very much needed for design purposes of heat transfer equipment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1998

Maged A.I. El‐Shaarawi and Esmail M. A. Mokheimer

The paper utilizes a boundary‐layer model in bipolar coordinates to study the developing laminar free convection in vertical open‐ended eccentric annuli with one of the boundaries…

Abstract

The paper utilizes a boundary‐layer model in bipolar coordinates to study the developing laminar free convection in vertical open‐ended eccentric annuli with one of the boundaries uniformly heated while the other boundary is cooled and kept isothermal at the ambient temperature. This model has been solved numerically using finite‐difference techniques. Results not available in the literature are presented for a fluid of Prandtl number 0.7 in an annulus of radius ratio 0.5 for three values of the dimensionless eccentricity, namely, 0.1, 0.5 and 0.7. These results include the developing velocity profiles and the pressure along the annulus, the channel heights required to naturally induce different flow rates and the variation of the total heat absorbed by the fluid with the channel height.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2002

Syeda Humaira Tasnim, Shohel Mahmud and Prodip Kumar Das

This paper presents the hydrodynamic and thermal behavior of fluid that surrounds an isothermal circular cylinder in a square cavity. Simulations were carried out for four aspect…

Abstract

This paper presents the hydrodynamic and thermal behavior of fluid that surrounds an isothermal circular cylinder in a square cavity. Simulations were carried out for four aspect ratios (defined by L/D), i.e. 2.0, 3.0, 4.0, 5.0. An incompressible flow of Newtonian fluid is considered. Prandtl number is assumed constant and equal to 1. Effect of eccentric positions (ε=−0.5 and 0.5) of the cylinder with respect to the cavity was carried out at L/D=2.0. Predicted results for eccentric cases are compared with concentric (ε=0.0) case. Grashof number is based on the diameter of the cylinder and ranges from 10 to 106. The control volume based finite volume method is used to discretize the governing equations in cylindrical coordinate. SIMPLE algorithm is used. A collocated variable arrangement is considered and SIP solver is employed to solve the system of equations. Parametric results are presented in the form of streamlines and isothermal lines for both eccentric and concentric positions. Heat transfer distribution along the perimeter of the cylinder is presented in the form of local Nusselt number. Predicted results show good agreement with the results described by Cesini et al. (1999).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 September 2019

Bora Lee, Yonghun Yu and Yong-Joo Cho

This paper aims to provide a reliable and efficient numerical piston–cylinder design method and assess the effect of clearance on the piston-cylinder lubrication.

Abstract

Purpose

This paper aims to provide a reliable and efficient numerical piston–cylinder design method and assess the effect of clearance on the piston-cylinder lubrication.

Design/methodology/approach

Numerical analyses of lubrication characteristics were performed for the piston–cylinder interface. The axial piston was numerically modeled, and the film pressure was calculated using the unsteady two-dimensional Reynolds equation. The behavior of the piston was analyzed by calculating the eccentricity satisfying the force and moment balance.

Findings

The secondary motion of the piston included numerically simulated several cycles until the piston behavior converged, and contact with the inner wall of the cylinder and friction region was estimated. Results showed that the piston–cylinder clearance affected the contact force, length of the contact region and leakage flow rate.

Originality/value

This result improves the understanding of the piston–cylinder lubrication and suggests considerations in terms of lubrication in clearance design.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 December 2020

Xuan Zhang, Jin-Bo Jiang, Xudong Peng and Jiyun Li

The purpose of this paper is to enhance sealing and rotordynamic performance of hole-pattern damping seal (HPDS) and labyrinth seal (LS) by structural innovation and geometrical…

Abstract

Purpose

The purpose of this paper is to enhance sealing and rotordynamic performance of hole-pattern damping seal (HPDS) and labyrinth seal (LS) by structural innovation and geometrical optimization of special-shaped hole or annular-groove cavity.

Design/methodology/approach

The unsteady flow was transformed into steady one using moving reference frame method. The full period numerical models of LS and HPDS were established. The influence of special-shaped hole or annular-groove cavity at axial inclined angle on leakage rate and rotordynamic coefficient of these two seals at different whirl angular speed were investigated.

Findings

The results show that dynamic characteristics of straight-tooth LS are better than that of slanted-tooth LS. Compared to typical straight-hole damping seal, HPDS with windward oblique-hole when axial inclined angle ranges from 50 to 60° has superiority in both leakage and rotordynamic characteristics by considering smaller cross-coupled stiffness coefficient and whirl frequency ratio, larger direct damping coefficient and effective damping coefficient.

Originality/value

A novel HPDS with special-shaped three-dimensional hole cavity was proposed to enhance leakage and rotordynamic performance. The optimized geometrical structures of HPDS for excellent sealing and rotordynamic characteristics were obtained.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0262/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 June 2020

Ningning Wu, Hong Guo, Shuai Yang and Shaolin Zhang

This paper aims to study the influence of thermal effect on the performance for a high-speed conical hybrid bearing including stability and minimum oil film thickness.

Abstract

Purpose

This paper aims to study the influence of thermal effect on the performance for a high-speed conical hybrid bearing including stability and minimum oil film thickness.

Design/methodology/approach

A thermal hydrodynamic (THD) model and dynamic model of single mass rigid rotor system were established by taking conical hybrid bearing with shallow and deep pockets as the research object, dynamic coefficient and stability parameters of bearing-rotor system were obtained by using finite element method (FEM) and finite difference method (FDM) to solve computational models of Reynolds equation, energy equation and viscosity-temperature equation. Minimum oil film thickness was obtained based on bearing force balance. Dynamic coefficient was compared with previous findings.

Findings

After considering thermal effect, the dimensionless critical mass decreases, a significant decrease in the instability speed, and the stability of the system decreases greatly; the minimum oil film thickness decreases because of thermal effect.

Originality/value

The thermal effect is combined with dynamic characteristics to analyze stability of the rotor system for a conical hybrid bearing. Influence of thermal effect on minimum oil film thickness is studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0542/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 September 2018

Erman Ulker, Sıla Ovgu Korkut and Mehmet Sorgun

The purpose of this paper is to solve Navier–Stokes equations including the effects of temperature and inner pipe rotation for fully developed turbulent flow in eccentric annuli…

Abstract

Purpose

The purpose of this paper is to solve Navier–Stokes equations including the effects of temperature and inner pipe rotation for fully developed turbulent flow in eccentric annuli by using finite difference scheme with fixing non-linear terms.

Design/methodology/approach

A mathematical model is proposed for fully developed turbulent flow including the effects of temperature and inner pipe rotation in eccentric annuli. Obtained equation is solved numerically via central difference approximation. In this process, the non-linear term is frozen. In so doing, the non-linear equation can be considered as a linear one.

Findings

The convergence analysis is studied before using the method to the proposed momentum equation. It reflects that the method approaches to the exact solution of the equation. The numerical solution of the mathematical model shows that pressure gradient can be predicted with a good accuracy when it is compared with experimental data collected from experiments conducted at Izmir Katip Celebi University Flow Loop.

Originality/value

The originality of this work is that Navier–Stokes equations including temperature and inner pipe rotation effects for fully developed turbulent flow in eccentric annuli are solved numerically by a finite difference method with frozen non-linear terms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 816