Search results

1 – 10 of over 30000
To view the access options for this content please click here
Article

Shahzada Zaman Shuja and Bekir Yilbas

The heat transfer rates from the body to the working fluid can be improved through altering geometric configurations of the body and its arrangement in the flow system…

Abstract

Purpose

The heat transfer rates from the body to the working fluid can be improved through altering geometric configurations of the body and its arrangement in the flow system. One of the arrangements for this purpose is to locate the body at the channel inlet while the convection current opposes it. Since the flow field in the channel inlet influences the heat transfer rates, changing the aspect ratio and inclination of the body is expected to modify the flow field while enhancing the heat transfer rates. Consequently, investigation into the influence of the aspect ratios and tilting angles of the body on the heat transfer rates in the channel flow becomes essential. The paper aims to discuss these issues.

Design/methodology/approach

Numerical simulation of flow in a channel with the presence of solid block is carried out. The block aspect ratio is changed while keeping the area of the block constant for all aspect ratios. The tilting angle is also incorporated analysis to examine its effect on the Nusselt number.

Findings

The throttling effect of the block at channel inlet accelerates the flow between the channel wall and the block faces. This, in turn modifies the thermal boundary layer around the block. In this case, heat transfer rates increase considerably at the block faces where the flow acceleration suppresses the thermal boundary layer thickness. This is more pronounced for large block tilting angles. The Nusselt number attains low values for the block face opposing to the flow at the channel inlet and the back face of the block. This is attributed to the mixing of the thermal current emanating from the side faces of the block in the region close to the back surface. In this case, thermal boundary layer thickens and the heat transfer rates from the block reduce significantly. The Nusselt number improves with reducing the block aspect ratio, which is particularly true along the side faces of the block. In addition, the influence of the block tilting angle on the Nusselt number is considerable for the low block aspect ratios.

Research limitations/implications

The model study is validated with the previous studies for the drag coefficient. The study covers all the aspects of the flow situations and discusses the resulting fluid field and the heat transfer rates from the block.

Practical implications

It is an interesting work for cooling applications. The block aspect ratio and its tilting angle in the channel influence considerably the flow field and the Nusselt number variation around the block faces.

Social implications

The cooling technology may be improved through implementing the findings of the current work.

Originality/value

It is an original work and it has never been submitted to other journals.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Esam M. Alawadhi and Raed I. Bourisliy

This paper presents the heat transfer enhancement from discrete heat sources using a wavy channel.

Abstract

Purpose

This paper presents the heat transfer enhancement from discrete heat sources using a wavy channel.

Design/methodology/approach

The finite element method is utilized to solve the hydrodynamic/thermal problem. The considered geometry consists of a channel formed by two wavy plates with six discrete heat sources placed on upper and lower walls. The global objective is to maximize the heat transfer from the heat sources. The wavy channel enhances heat transfer from the heat sources through the modification of the flow pattern in the channel. The effects of the Reynolds number, Prandtl number, waviness of the wavy wall, and the location of the heat sources on the thermal characteristics of the flow are investigated.

Findings

Results indicate that the wavy channel significantly enhances the heat flow out of the heat sources, with heat sources located at the minimum channel cross sections having the best performance. The Nusselt number increases with an increase in Reynolds number and waviness of the wavy channel. The higher Prandtl number has a positive effect on the heat flow out of the heat sources. The heat transfer enhancement can reaches as high as 120 percent for high Reynolds numbers and waviness of the channel.

Originality/value

The combination of wavy plates and optimum placement of heat sources can lead to better, less expensive thermal management of heat sources in electronic devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Younes Menni, Ahmed Azzi, Ali J. Chamkha and Souad Harmand

The purpose of this paper is to carry out a numerical study on the dynamic and thermal behavior of a fluid with a constant property and flowing turbulently through a…

Abstract

Purpose

The purpose of this paper is to carry out a numerical study on the dynamic and thermal behavior of a fluid with a constant property and flowing turbulently through a two-dimensional horizontal rectangular channel. The upper surface was put in a constant temperature condition, while the lower one was thermally insulated. Two transverse, solid-type obstacles, having different shapes, i.e. flat rectangular and V-shaped, were inserted into the channel and fixed to the top and bottom walls of the channel, in a periodically staggered manner to force vortices to improve the mixing, and consequently the heat transfer. The flat rectangular obstacle was put in the first position and was placed on the hot top wall of the channel. However, the second V-shaped obstacle was placed on the insulated bottom wall, at an attack angle of 45°; its position was varied to find the optimum configuration for optimal heat transfer.

Design/methodology/approach

The fluid is considered Newtonian, incompressible with constant properties. The Reynolds averaged Navier–Stokes equations, along with the standard k-epsilon turbulence model and the energy equation, are used to control the channel flow model. The finite volume method is used to integrate all the equations in two-dimensions; the commercial CFD software FLUENT along with the SIMPLE-algorithm is used for pressure-velocity coupling. Various values of the Reynolds number and obstacle spacing were selected to perform the numerical runs, using air as the working medium.

Findings

The channel containing the flat fin and the 45° V-shaped baffle with a large Reynolds number gave higher heat transfer and friction loss than the one with a smaller Reynolds number. Also, short separation distances between obstacles provided higher values of the ratios Nu/Nu0 and f/f0 and a larger thermal enhancement factor (TEF) than do larger distances.

Originality/value

This is an original work, as it uses a novel method for the improvement of heat transfer in completely new flow geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

J.J. Hwang, T.Y. Lia and S.H. Chen

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls…

Abstract

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls of this two‐pass channel are subject to a constant heat flux. A two‐equation kε turbulence model with modified terms for Coriolis and rotational buoyancy is employed to resolve this elliptic problem. The duct through‐flow rate and rotating speed are fixed constantly; while the wall heat flux into the fluid is varied to examine the rotating buoyancy effect on the heat transfer and fluid flow characteristics. It is disclosed that the changes in local heat transfer due to the rotational buoyancy in the radially outward flow are more significant than those in the radially inward flow. However, the channel averaged heat transfer is altered slightly due to the rotational buoyancy in the both ducts. Whenever the buoyancy effects are sufficiently strong, the flow reversal appears over the leading face of the radially outward‐flow channel, and the radial distance for initiation of flow separation decreases with increasing the buoyancy parameter. A comparison of the present numerical results with the available experimental data by taking buoyancy into consideration is also presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Shanglong Xu, Dichen Li, Bingheng Lu, Yiping Tang, Chaofeng Wang and Zhen Wang

The purpose of this paper is to adopt rapid prototyping (RP) technology to fabricate self‐hardening calcium phosphate composite (CPC) scaffolds with a controlled internal…

Abstract

Purpose

The purpose of this paper is to adopt rapid prototyping (RP) technology to fabricate self‐hardening calcium phosphate composite (CPC) scaffolds with a controlled internal channel network to facilitate nutrient supplying and cell growth using RP technique and investigate their in vitro performance.

Design/methodology/approach

Porous scaffolds should possess branched channels to ensure uniform cell feeding and even flow of culture medium to promote uniform cell attachment and growth. A new three dimensional (3D) flow channel structure has been designed based on conversation of energy and flow. The CPC scaffold possessing such a channel network was made by indirect solid free form fabrication. Negative model of scaffold was designed by Pro/E software and its epoxy resin mold was fabricated on a sterolithography apparatus and the CPC slurry was filled in these molds. After CPC was self hardened, the mold was baked. The mold was removed by pyrolysis and then the designed scaffold was obtained.

Findings

The sizes of the fabricated scaffolds were consistent with the designed. The average compressive strength of the scaffold is approximately 6.0 MPa. Computational fluid dynamics and perfusion culture results showed that such a 3D flow channel arrangement would lead to a more uniform distribution of flow and cells and good transportation of nutrients.

Research limitations/implications

The size errors of fabricated scaffolds could not escape and perfusion methods were difficult to control.

Originality/value

The basic design concept presented showed great promise for use in bone tissue engineering and fabrication method enhanced the versatility of scaffold fabrication. The designed scaffold structure made it possible to keep integrality of the scaffold when direct observation cells inside the channel by scanning electron microscopy (SEM).

Details

Rapid Prototyping Journal, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Weifeng Wu, Jian Li, Ting Li, Quanke Feng and Xiaoling Yu

The purpose of this paper is to find a solution of laminar liquid flow in asymmetric narrow channels. In many cases, an intuitive solution is much more useful and…

Abstract

Purpose

The purpose of this paper is to find a solution of laminar liquid flow in asymmetric narrow channels. In many cases, an intuitive solution is much more useful and necessary for engineering applications, although numerical solutions can be obtained.

Design/methodology/approach

The Navier‐Stokes equations of laminar liquid flow in asymmetric narrow channels are simplified based on geometric characteristics of narrow channels, physical characteristics of liquid and boundary conditions. The simplified Navier‐Stokes equations are solved theoretically. Verification of the obtained results is carried out based on comparing with the Jeffery‐Hamel flow, which is an exact solution of liquid flow in convergent or divergent channels proposed by Jeffery.

Findings

This paper proposed an intuitive solution of laminar liquid flow in asymmetric narrow channels. Obtained results show that the solution can provide a fairly precise flowrate, when a ratio between the width of the channel and the curvature of the boundary of the asymmetry channel is smaller than 0.2936/Re. Furthermore, the obtained solution of pressure distribution along the channel shows high enough accuracy, even though the Reynolds number reaches to higher than 105.

Research limitations/implications

Because the authors assumed the width of the channel is far smaller than the curvature of the boundary of the asymmetric channel, the obtained results could only fit finite cases. Because the Navier‐Stocks equations were finally simplified into one‐dimensional, it is impossible to forecast separation flows; so the obtained results will fail when the Re number is too big. However, experiments should be carried out further to verify these problems.

Originality/value

This paper proposes an intuitive solution of laminar liquid flow in asymmetric narrow channels, including the pressure distribution along the channel.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Sahin Ahmed and Ali J. Chamkha

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous…

Abstract

Purpose

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in presence of a strong transverse magnetic filled and with the application of thermal radiation. In this investigation, the fluid is considered to be of viscous, electrically conducting, Newtonian and radiating and is optically thin with a relatively low density. Excellent agreement is obtained for exact solutions with those of previously published works.

Design/methodology/approach

In this investigation, a closed form analytical method based on the complex notations for the velocity, temperature and the pressure is developed to solve the governing coupled, non-linear partial differential equations. The accuracy and effectiveness of the method are demonstrated.

Findings

Interestingly observed that, the Lorentizian body force is not act as a drag force as in conventional MHD flows, but as an aiding body force and this will serve to accelerate the flow and boost the primary velocities. Due to the large rotation of the channel, the primary velocities are become flattered and shift towards the walls of the channel. With a rise in Darcian drag force, flow velocity and shear stress are found to reduce. Moreover, increasing thermal radiation and rotation of the channel strongly depress the shear stress, and maximum flow reversal, i.e. back flow is observed due to large Darcian resistance, thermal radiation and rotation.

Research limitations/implications

The analysis is valid for unsteady, two-dimensional laminar flow of an optically thick no-gray gas, electrically conducting, and Newtonian fluid past an isothermal vertical surface adjacent to the Darcian regime with variable surface temperature. An extension to three-dimensional flow case is left for future work.

Practical implications

Practical interest of such study includes applications in magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors, magnetic suppression of molten semi-conducting materials and meteorology and in many branches of engineering and science. It is well known that the effect of thermal radiation is important in space technology and high-temperature processes. Thermal radiation also plays an important role in controlling heat transfer process in polymer processing industry.

Originality/value

The paper presents useful conclusions with the help of graphical results obtained from studying exact solutions based on complex notations for Darcian drag force, rotation of the channel and conduction-radiation heat transfer interaction by unsteady rotational flow in a vertical porous channel embedded in a Darcian porous regime under the application hydromagnetic force. The results of this study may be of interest to engineers for heat transfer augmentation and drag reduction in heat exchangers as well as MHD boundary layer control of re-entry vehicles, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Ahamed Saleel C., Asif Afzal, Irfan Anjum Badruddin, T.M. Yunus Khan, Sarfaraz Kamangar, Mostafa Abdelmohimen, Manzoore Elahi M. Soudagar and H. Fayaz

The characteristics of fluid motions in micro-channel are strong fluid-wall surface interactions, high surface to volume ratio, extremely low Reynolds number laminar flow

Abstract

Purpose

The characteristics of fluid motions in micro-channel are strong fluid-wall surface interactions, high surface to volume ratio, extremely low Reynolds number laminar flow, surface roughness and wall surface or zeta potential. Due to zeta potential, an electrical double layer (EDL) is formed in the vicinity of the wall surface, namely, the stern layer (layer of immobile ions) and diffuse layer (layer of mobile ions). Hence, its competent designs demand more efficient micro-scale mixing mechanisms. This paper aims to therefore carry out numerical investigations of electro osmotic flow and mixing in a constricted microchannel by modifying the existing immersed boundary method.

Design/methodology/approach

The numerical solution of electro-osmotic flow is obtained by linking Navier–Stokes equation with Poisson and Nernst–Planck equation for electric field and transportation of ion, respectively. Fluids with different concentrations enter the microchannel and its mixing along its way is simulated by solving the governing equation specified for the concentration field. Both the electro-osmotic effects and channel constriction constitute a hybrid mixing technique, a combination of passive and active methods. In microchannels, the chief factors affecting the mixing efficiency were studied efficiently from results obtained numerically.

Findings

The results indicate that the mixing efficiency is influenced with a change in zeta potential (ζ), number of triangular obstacles, EDL thickness (λ). Mixing efficiency decreases with an increment in external electric field strength (Ex), Peclet number (Pe) and Reynolds number (Re). Mixing efficiency is increased from 28.2 to 50.2% with an increase in the number of triangular obstacles from 1 to 5. As the value of Re and Pe is decreased, the overall percentage increase in the mixing efficiency is 56.4% for the case of a mixing micro-channel constricted with five triangular obstacles. It is also vivid that as the EDL overlaps in the micro-channel, the mixing efficiency is 52.7% for the given zeta potential, Re and Pe values. The findings of this study may be useful in biomedical, biotechnological, drug delivery applications, cooling of microchips and deoxyribonucleic acid hybridization.

Originality/value

The process of mixing in microchannels is widely studied due to its application in various microfluidic devices like micro electromechanical systems and lab-on-a-chip devices. Hence, its competent designs demand more efficient micro-scale mixing mechanisms. The present study carries out numerical investigations by modifying the existing immersed boundary method, on pressure-driven electro osmotic flow and mixing in a constricted microchannel using the varied number of triangular obstacles by using a modified immersed boundary method. In microchannels, the theory of EDL combined with pressure-driven flow elucidates the electro-osmotic flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Guohua Zhang, Xueting Liu, Bengt Ake Sundén and Gongnan Xie

This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling…

Abstract

Purpose

This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling performance, three configurations are designed to observe the effects of the distance between the center of the ellipse and the side wall(Case 1, l = w/2, Case 2, l = w/3 and for Case 3, l = w/4).

Design/methodology/approach

Numerical simulations are conducted under two blowing ratios (i.e. 0.5 and 1) and a fixed cross-flow Reynolds number (Rec = 100,000) with a verified turbulence model.

Findings

It is shown that at low blowing ratio, reducing the distance increases the film cooling effectiveness but keeps the trend of the effectiveness unchanged, while at high blowing ratio, the characteristic is a little bit different in the range of 0 = x/D =10.

Research limitations/implications

These features could be explained by the fact that shrinking the distance between the hole and side wall induces a much smaller reserved region and vortex downstream the ribs and a lower resistance for cooling air entering the film hole. Furthermore, the spiral flow inside the hole is impaired.

Originality/value

As a result, the kidney-shaped vortices originating from the jet flow are weakened, and the target surface can be well covered, resulting in an enhancement of the adiabatic film cooling performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Younes Menni, Ali J. Chamkha, Nicola Massarotti, Houari Ameur, Noureddine Kaid and Mohammed Bensafi

The purpose of this paper is to carry out a hydrodynamic and thermal analysis of turbulent forced-convection flows of pure water, pure ethylene glycol and water-ethylene…

Abstract

Purpose

The purpose of this paper is to carry out a hydrodynamic and thermal analysis of turbulent forced-convection flows of pure water, pure ethylene glycol and water-ethylene glycol mixture, as base fluids dispersed by Al2O3 nano-sized solid particles, through a constant temperature-surfaced rectangular cross-section channel with detached and attached obstacles, using a computational fluid dynamics (CFD) technique. Effects of various base fluids and different Al2O3 nano-sized solid particle solid volume fractions with Reynolds numbers ranging from 5,000 to 50,000 were analyzed. The contour plots of dynamic pressure, stream-function, velocity-magnitude, axial velocity, transverse velocity, turbulent intensity, turbulent kinetic energy, turbulent viscosity and temperature fields, the axial velocity profiles, the local and average Nusselt numbers, as well as the local and average coefficients of skin friction, were obtained and investigated numerically.

Design/methodology/approach

The fluid flow and temperature fields were simulated using the Commercial CFD Software FLUENT. The same package included a preprocessor GAMBIT which was used to create the mesh needed for the solver. The RANS equations, along with the standard k-epsilon turbulence model and the energy equation were used to control the channel flow model. All the equations were discretized by the finite volume method using a two-dimensional formulation, using the semi-implicit method for pressure-linked equations pressure-velocity coupling algorithm. With regard to the flow characteristics, the interpolation QUICK scheme was applied, and a second-order upwind scheme was used for the pressure terms. The under-relaxation was changed between the values 0.3 and 1.0 to control the update of the computed variables at each iteration. Moreover, various grid systems were tested to analyze the effect of the grid size on the numerical solution. Then, the solutions are said to be converging when the normalized residuals are smaller than 10-12 and 10-9 for the energy equation and the other variables, respectively. The equations were iterated by the solver till it reached the needed residuals or when it stabilized at a fixed value.

Findings

The result analysis showed that the pure ethylene glycol with Al2O3 nanoparticles showed a significant heat transfer enhancement, in terms of local and average Nusselt numbers, compared with other pure or mixed fluid-based nanofluids, with low-pressure losses in terms of local and average skin friction coefficients.

Originality/value

The present research ended up at interesting results which constitute a valuable contribution to the improvement of the knowledge basis of professional work through research related to turbulent flow forced-convection within channels supplied with obstacles, and especially inside heat exchangers and solar flat plate collectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 30000