Search results

1 – 10 of 11
Article
Publication date: 1 March 1997

S. Sundarraj and V.R. Voller

Explains that segregation processes during the solidification of a binary alloy occur at two distinct length scales: on the microscopic length scale of the crystal interface, in…

3062

Abstract

Explains that segregation processes during the solidification of a binary alloy occur at two distinct length scales: on the microscopic length scale of the crystal interface, in the two‐phase mushy zone, segregation is controlled by solid state mass diffusion; and, on the macroscopic scale of the process, segregation is controlled by the convective transport of the molten metal. Concludes that developing models that can capture both these scales is a challenge. Introduces a bi‐level grid, and uses a macro grid on the scale of the process for the solution of equations describing macroscopic heat and mass transport. Details how each node point in the macro grid is associated with a micro grid on which equations describing the microscopic phenomena in the mushy region are solved. In this way, develops a dual‐scale model of segregation during the solidification of a binary alloy. On investigating the unidirectional solidification of a binary alloy, demonstrates that this dual‐scale model is able to capture both the macro and micro‐scales in a single numerical treatment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 2/3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Safa Sabet, Moghtada Mobedi, Murat Barisik and Akira Nakayama

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media…

Abstract

Purpose

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media is a periodic dual scale porous media. It consists of the square rods which are permeable in an aligned arrangement. It is aimed to observe the enhancement of heat transfer through the porous media, which is important for thermal designers, by inserting intra-pores into the square rods. A special attention is given to the roles of size and number of intra-pores on the heat transfer enhancement through the dual scale porous media. The role of intra-pores on the pressure drop of air flow through porous media is also investigated by calculation and comparison of the friction coefficient.

Design/methodology/approach

To calculate the interfacial convective heat transfer coefficient, the governing equations which are continuity, momentum and energy equations are solved to determine velocity, pressure and temperature fields. As the dual scale porous structure is periodic, a representative elementary volume is generated, and the governing equations are numerically solved for the selected representative volume. By using the obtained velocity, pressure and temperature fields and using volume average definition, the volume average of aforementioned parameters is calculated and upscaled. Then, the interfacial convective heat transfer coefficient and the friction coefficient is numerically determined. The interparticle porosity is changed between 0.4 and 0.75, while the intraparticle varies between 0.2 and 0.75 to explore the effect of intra-pore on heat transfer enhancement.

Findings

The obtained Nusselt number values are compared with corresponding mono-scale porous media, and it is found that heat transfer through a porous medium can be enhanced threefold (without the increase of pressure drop) by inserting intraparticle pores in flow direction. For the porous media with low values of interparticle porosity (i.e. = 0.4), an optimum intraparticle porosity exists for which the highest heat transfer enhancement can be achieved. This value was found around 0.3 when the interparticle porosity was 0.4.

Research limitations/implications

The results of the study are interesting, especially from heat transfer enhancement point of view. However, further studies are required. For instance, studies should be performed to analyze the rate of the heat transfer enhancement for different shapes and arrangements of particles and a wider range of porosity. The other important parameter influencing heat transfer enhancement is the direction of pores. In the present study, the intraparticle pores are in flow direction; hence, the enhancement rate of heat transfer for different directions of pores must also be investigated.

Practical implications

The application of dual scale porous media is widely faced in daily life, nature and industry. The flowing of a fluid through a fiber mat, woven fiber bundles, multifilament textile fibers, oil filters and fractured porous media are some examples for the application of the heat and fluid flow through a dual scale porous media. Heat transfer enhancement.

Social implications

The enhancement of heat transfer is a significant topic that gained the attention of researchers in recent years. The importance of topic increases day-by-day because of further demands for downsizing of thermal equipment and heat recovery devices. The aim of thermal designers is to enhance heat transfer rate in thermal devices and to reduce their volume (and/or weight in some applications) by using lower mechanical power for cooling.

Originality/value

The present study might be the first study on determination of thermal transport properties of dual scale porous media yielded interesting results such as considerable enhancement of heat transfer by using proper intraparticle channels in a porous medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2005

S. D'Heedene, K. Amaratunga and J. Castrillón‐Candás

This paper presents a novel framework for solving elliptic partial differential equations (PDEs) over irregularly spaced meshes on bounded domains.

Abstract

Purpose

This paper presents a novel framework for solving elliptic partial differential equations (PDEs) over irregularly spaced meshes on bounded domains.

Design/methodology/approach

Second‐generation wavelet construction gives rise to a powerful generalization of the traditional hierarchical basis (HB) finite element method (FEM). A framework based on piecewise polynomial Lagrangian multiwavelets is used to generate customized multiresolution bases that have not only HB properties but also additional qualities.

Findings

For the 1D Poisson problem, we propose – for any given order of approximation – a compact closed‐form wavelet basis that block‐diagonalizes the stiffness matrix. With this wavelet choice, all coupling between the coarse scale and detail scales in the matrix is eliminated. In contrast, traditional higher‐order (n>1) HB do not exhibit this property. We also achieve full scale‐decoupling for the 2D Poisson problem on an irregular mesh. No traditional HB has this quality in 2D.

Research limitations/implications

Similar techniques may be applied to scale‐decouple the multiresolution finite element (FE) matrices associated with more general elliptic PDEs.

Practical implications

By decoupling scales in the FE matrix, the wavelet formulation lends itself particularly well to adaptive refinement schemes.

Originality/value

The paper explains second‐generation wavelet construction in a Lagrangian FE context. For 1D higher‐order and 2D first‐order bases, we propose a particular choice of wavelet, customized to the Poisson problem. The approach generalizes to other elliptic PDE problems.

Details

Engineering Computations, vol. 22 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 April 2018

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health…

Abstract

Purpose

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health assessment methodology, very good extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities.

Design/methodology/approach

Filtration of time-frequency information of multimode Lamb waves through the noisy signal is investigated in the present analysis using matched filtering technique and wavelet denoising methods. Using Shannon’s entropy criterion, the optimal wavelet function is selected and verification is made via the analysis of root mean square error of filtered signal.

Findings

The authors propose wavelet matched filter method, a combination of the wavelet transform and matched filtering method, which can significantly improve the accuracy of the filtered signal and identify relatively small damage, especially in enormously noisy data. Correlation coefficient and root mean square error are additionally computed for performance evaluation of the filters.

Originality/value

The present study provides detailed information about various noise filtering methods and a first attempt to apply the combination of the different techniques in signal processing for the structural health monitoring application. A comparative study is performed using the statistical tool to know whether filtered signals obtained through three different methods are acceptable and practicable for guided wave application or not.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 1988

WE MAKE NO apologies for taking Thomas Paine's classic title for our leader this month. Written all but 200 years ago, it was brought vividly to mind when we read letters in a…

154

Abstract

WE MAKE NO apologies for taking Thomas Paine's classic title for our leader this month. Written all but 200 years ago, it was brought vividly to mind when we read letters in a contemporary journal. From two well‐qualified men in their early fifties, they regretted they could obtain no replies to many applications for employment. They were, all too evidently, considered “too old at 50'.

Details

Work Study, vol. 37 no. 3
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 8 January 2020

Paola Ginestra, Stefano Pandini and Elisabetta Ceretti

The purpose of this paper is to focus on the production of scaffolds with specific morphology and mechanical behavior to satisfy specific requirements regarding their stiffness…

178

Abstract

Purpose

The purpose of this paper is to focus on the production of scaffolds with specific morphology and mechanical behavior to satisfy specific requirements regarding their stiffness, biological interactions and surface structure that can promote cell-cell and cell-matrix interactions though proper porosity, pore size and interconnectivity.

Design/methodology/approach

This case study was focused on the production of multi-layered hybrid scaffolds made of polycaprolactone and consisting in supporting grids obtained by Material Extrusion (ME) alternated with electrospun layers. An open source 3D printer was utilized, with a grain extrusion head that allows the production and distribution of strands on the plate according to the designed geometry. Square grid samples were observed under optical microscope showing a good interconnectivity and spatial distribution of the pores, while scanning electron microscope analysis was used to study the electrospun mats morphology.

Findings

A good adhesion between the ME and electrospinning layers was achieved by compression under specific thermomechanical conditions obtaining a hybrid three-dimensional scaffold. The mechanical performances of the scaffolds have been analyzed by compression tests, and the biological characterization was carried out by seeding two different cells phenotypes on each side of the substrates.

Originality/value

The structure of the multi-layered scaffolds demonstrated to play an important role in promoting cell attachment and proliferation in a 3D culture formation. It is expected that this design will improve the performances of osteochondral scaffolds with a strong influence on the required formation of an interface tissue and structure that need to be rebuilt.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 February 2021

Fuchun Jia, Yulong Lei, Xianghuan Liu, Yao Fu and Jianlong Hu

The lubrication of the high-speed reducer of an electric vehicle is investigated. The specific contents include visualization of the flow field inside reducer, lubrication…

Abstract

Purpose

The lubrication of the high-speed reducer of an electric vehicle is investigated. The specific contents include visualization of the flow field inside reducer, lubrication evaluation of bearings and efficiency experiment.

Design/methodology/approach

The flow field inside reducer at five working conditions: straight, uphill, downhill, left lean and right lean is simulated by smoothed particle hydrodynamics (SPH). According to the instantaneous number of particles through bearings, the lubrication states of bearings are evaluated. The test platform is set up to measure the efficiency of the reducer.

Findings

The flow field inside the reducer is obtained, the lubrication of bearings needs to be improved, the efficiency of the electric vehicle reducer meets the requirement.

Originality/value

The SPH method is used to simulate lubrication instead of using the traditional grid-based finite volume method. A novel method to evaluate the lubrication of bearings is proposed. The method and conclusions can guide electric vehicle reducer design.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 July 2019

Alejandro Clausse, Nicolás Silin and Gustavo Boroni

The purpose of this paper is to obtain a permeability law of a gas flow through a permeable medium using particle image velocimetry experimental data as primal information, which…

Abstract

Purpose

The purpose of this paper is to obtain a permeability law of a gas flow through a permeable medium using particle image velocimetry experimental data as primal information, which is conflated with numerical calculations by means of a multi-scale method.

Design/methodology/approach

The D2Q9 single-relaxation-time Lattice Boltzmann model (LBM) implemented in GPU is used for the numerical calculations. In a first homogenized micro-scale, the drag forces are emulated by means of an effective Darcy law acting only in the close neighborhood of the solid structures. A second mesoscopic level of homogenization makes use of the effective drag forces resulting from the first-scale model.

Findings

The procedure is applied to an experiment consisting of a regular array of wires. For the first level of homogenization, an effective drag law of the individual elemental obstacles is produced by conflating particle image velocimetry measurements of the flow field around the wires and numerical calculations performed with a GPU implementation of the LBM. In the second homogenization, a Darcy–Forchheimer correlation is produced, which is used in a final homogenized LBM model.

Research limitations/implications

The numerical simulations at the first level of homogenization require a substantial amount of calculations, which in the present case were performed by means of the computational power of a GPU.

Originality/value

The homogenization procedure can be extended to other permeable structures. The micro-scale-level model retrieves the fluid-structure forces between the flow and the obstacles, which are difficult to obtain experimentally either from direct measurement or by indirect assessment from velocity measurements.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2021

Wenqiang Guo, Guoxiang Hou, Yin Guan and Senyun Liu

This paper aims to explore the mechanism of the slip phenomenon at macro/micro scales, and analyze the effect of slip on fluid flow and heat transfer, to reduce drag and enhance…

Abstract

Purpose

This paper aims to explore the mechanism of the slip phenomenon at macro/micro scales, and analyze the effect of slip on fluid flow and heat transfer, to reduce drag and enhance heat transfer.

Design/methodology/approach

The improved tangential momentum accommodation coefficient scheme incorporated with Navier’s slip model is introduced to the discrete unified gas kinetic scheme as a slip boundary condition. Numerical tests are simulated using the D2Q9 model with a code written in C++.

Findings

Velocity contour with slip at high Re is similar to that without slip at low Re. For flow around a square cylinder, the drag is reduced effectively and the vortex shedding frequency is reduced. For flow around a delta wing, drag is reduced and lift is increased significantly. For Cu/water nanofluid in a channel with surface mounted blocks, drag can be reduced greatly by slip and the highest value of drag reduction (DR) (67.63%) can be obtained. The highest value of the increase in averaged Nu (11.78%) is obtained by slip at Re = 40 with volume fraction φ=0.01, which shows that super-hydrophobic surface can enhance heat transfer by slip.

Originality/value

The present study introduces and proposes an effective and superior method for the numerical simulation of fluid/nanofluid slip flow, which has active guidance meaning and applied value to the engineering practice of DR, heat transfer, flow control and performance improvement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2019

Chunyang Wang, Moghtada Mobedi and Fujio Kuwahara

The purpose of this study is to validate whether the local thermal equilibrium for unsteady state is an appropriate assumption for the porous media with closed pores. It also…

Abstract

Purpose

The purpose of this study is to validate whether the local thermal equilibrium for unsteady state is an appropriate assumption for the porous media with closed pores. It also compares the transient temperatures between the pore scale and volume averaged approaches to prove that the volume averaged method is an appropriate technique for the heat transfer in closed-cell porous media. The interfacial heat transfer coefficient for the closed-cell porous media is also discussed in details.

Design/methodology/approach

The governing equations for the pore scale and continuum domains are given. They are solved numerically for the pore scale and volume-averaged domains. The results are compared and discussion was done. The performed discussions and explanations are supported with figure and graphics.

Findings

A local thermal non-equilibrium exits for the closed-cell porous media in which voids are filled with water during the unsteady heat transfer process. Local thermal non-equilibrium condition exists in the cells under high temperature gradient and it disappears when the heat transfer process becomes steady-state. Although a local thermal equilibrium exists in the porous media in which the voids are filled with air, a finite value for heat transfer coefficient is found. The thermal diffusivity of air and solid phase are close to each other and hence a local thermal equilibrium exists.

Research limitations/implications

The study is done only for the closed-cell porous media and for Rayleigh number till 105. Two common working fluids as water and air are considered.

Practical implications

There are many applications of porous media with closed pores particularly in the industry, such as the closed-cell metal foam or the closed cells in porous materials such as foods and plastic-based insulation material. The obtained results are important for transient heat transfer in closed-cell porous materials.

Social implications

The obtained results are important from the transient application of heat transfer in the closed-cell material existing in nature and industry.

Originality/value

The authors’ literature survey shows that it is the first time the closed-cell porous media is discussed from local thermal non-equilibrium point of view and it is proved that the local thermal non-equilibrium can exist in the closed-cell porous media. Hence, two equations as solid and fluid equations should be used for unsteady heat transfer in a closed-cell porous medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 11