Search results

1 – 10 of 65
Article
Publication date: 6 November 2023

Xiao Xu and Yimin Zhang

This study aims to form composite solid lubricant coatings on the surface of bearing steel, which can significantly improve the tribological properties of thrust cylindrical…

Abstract

Purpose

This study aims to form composite solid lubricant coatings on the surface of bearing steel, which can significantly improve the tribological properties of thrust cylindrical roller bearings (TCRBs). Phosphating films possess microscopic porosity that typically needs to be sealed with oil, grease or wax. Due to its unique crystal structure, the phosphating film itself also exhibits a certain degree of lubricity. In this study, solid lubricants are used to fill the pores of the phosphating film. By combining the phosphating film with solid lubricants, lubrication and wear reduction can be achieved.

Design/methodology/approach

In this study, the surfaces of the shaft washer (WS) and seat washer (GS) were treated with zinc-phosphating. Subsequently, a solid lubricant solution (polytetrafluoroethylene [PTFE], MoS2 and graphite) was sprayed onto the phosphated samples at concentrations of 1 , 2  and 3 g/L. The porous and adsorptive nature of the phosphating film was used to embed the solid lubricant particles into the film, thus forming a composite lubrication layer containing solid lubricants on the surface of the bearing steel.

Findings

The addition of solid lubricant materials has shown significant potential in reducing wear losses compared with phosphated samples without such additives. Increasing the amount of solid lubricant added can facilitate the formation of a transfer film, which further enhances the protective properties. However, it is important to note that excessive amounts of solid lubricant material can contribute to seizure, leading to increased wear losses of the cage and a higher average coefficient of friction (ACOF).By spraying a PTFE solution with a concentration of 2 g/L, the lowest ACOF and cage wear loss were achieved, resulting in reductions of 60.5% for the ACOF and 89.4% for the cage wear loss. Similarly, when spraying a graphite solution with a concentration of 3 g/L, the lowest wear losses for GS and WS were observed, with reductions of 51.7% for GS wear loss and 38.9% for WS wear loss.

Originality/value

The combination of the phosphating film and solid lubricants aims to achieve lubrication and wear reduction, providing a new approach to wear-resistant technology for TCRBs.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0231/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2024

Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Abstract

Purpose

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Design/methodology/approach

M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.

Findings

The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.

Originality/value

The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 May 2023

Ting Li, Xianggang Chen, Junhai Wang, Lixiu Zhang, Xinran Li and Xiaoyi Wei

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil…

Abstract

Purpose

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil for friction and wear tests to simulate the wear conditions of hybrid bearings.

Design/methodology/approach

Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricant additives were investigated and the effects of shell thickness and sample concentration on the tribological properties of core–shell composite lubricant additives were discussed.

Findings

The findings demonstrate that each of the five sample materials can, to varying degrees, enhance the lubricating qualities of the base oil and that the core–shell nanocomposite sample lubricant additive has superior lubricating properties to those of ZnFe2O4 and MoS2 alone, among them ZnFe2O4@MoS2-2 core–shell composites with moderate shell thickness performed most ideally. In addition, the optimal concentration of the ZnFe2O4@MoS2 lubricant additive was 0.5 Wt.%, and a concentration that was too high led to particle deposition and affected the friction effect.

Originality/value

In this work, ZnFe2O4@MoS2 core–shell composites were synthesized for the first time using ZnFe2O4 as the carrier and the lubrication mechanism of core–shell composites and single materials were compared and studied, which illustrated the advantages of core–shell composite lubricant additives. At the same time, the influence of different shell thicknesses on the lubricant additives of core–shell composites was studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0367/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 August 2023

Jian Sun, Xin Fang, Jinmei Yao, Zhe Zhang, Renyun Guan and Guangxiang Zhang

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Abstract

Purpose

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Design/methodology/approach

The paper established an analysis model based on the fluid–solid conjugate heat transfer theory for full ceramic ball bearings. The distribution of flow, temperature and pressure field of bearings under variable working conditions is analyzed. Meanwhile, the mathematical model of elastohydrodynamic lubrication (EHL) of full ceramic ball bearings is established. The numerical analysis is used to study the influence of variable working conditions on the lubricant film thickness and pressure distribution of bearings. The temperature rise test of full ceramic ball bearing under oil lubrication was carried out to verify the correctness of simulation results.

Findings

As the speed increased, the oil volume fraction in full ceramic ball bearing decreased and the surface pressure of rolling element increased. The temperature rise of full ceramic ball bearings increases with increasing speed and load. The lubricant film thickness of full ceramic ball bearing is positively correlated with speed and negatively correlated with load. The pressure of lubricating film is positively correlated with speed and load. The test shows that the higher inner ring speed and radial load, the higher the steady-state temperature rise of full ceramic ball bearing. The test results are in high agreement with simulation results.

Originality/value

Based on the fluid–solid conjugate heat transfer theory and combined with Reynolds equation, lubricating oil film thickness formula, viscosity temperature and viscosity pressure formula. The thermal analysis model and EHL mathematical model of ceramic ball bearings are established. The flow field, temperature field and pressure field distribution of the full ceramic ball bearing are determined. And the thickness and pressure distribution of lubricating oil film in the contact area of full ceramic ball bearing were determined.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0126/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 April 2023

Marlene Kristin Ziegler, Benedict Rothammer, Marcel Bartz, Sandro Wartzack, Patrick Beau, Gregor Patzer, Stephan Henzler and Max Marian

The evaluation of the haptics of water taps and wear-related changes during usage usually involves time- and cost-intensive testing. The purpose of this paper is to abstract the…

Abstract

Purpose

The evaluation of the haptics of water taps and wear-related changes during usage usually involves time- and cost-intensive testing. The purpose of this paper is to abstract the tribo-system between technical ceramic disks of water tap mixer cartridges to the model level and study the tribological behavior.

Design/methodology/approach

The friction and wear behavior was studied by means of an alumina ball-on-original alumina disk setup at different temperatures as well as under dry conditions and under lubrication by different greases. Thereby, the frictional behavior was measured in situ, and the wear losses were analyzed by means of laser scanning microscopy.

Findings

It was shown that friction and wear can behave in a contrasting way, whereby one grease might lead to low friction, that is, an easy-going movability of the water tap, but to increased wear losses. The latter, in turn, is an indicator for the usability and service life, which cannot be explained from friction alone. Thereby, the viscosity of the base oil, the grease consistency and additives were identified as relevant grease formulation parameters to allow for fluid film (re-)formation and removal of wear particles.

Originality/value

To the authors’ best knowledge, this is the first approach to systematically analyze the friction and wear behavior of technical ceramic disks of water tap mixer cartridges in dependency on the temperature as well as the used lubricating grease. This approach is relevant for developing screening test strategies as well as for the selection of lubricants for water tap applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0334/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 February 2024

Rajesh Shah, Blerim Gashi, Vikram Mittal, Andreas Rosenkranz and Shuoran Du

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of…

Abstract

Purpose

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of tribological systems, researchers tend to use quantitative and qualitative analysis to monitor critical parameters and material characterization to explain observed dependencies. In this regard, numerical modeling and simulation offers a cost-effective alternative to physical experimentation but must be validated with limited testing. This paper aims to highlight advances in numerical modeling as they relate to the field of tribology.

Design/methodology/approach

This study performed an in-depth literature review for the field of modeling and simulation as it relates to tribology. The authors initially looked at the application of foundational studies (e.g. Stribeck) to understand the gaps in the current knowledge set. The authors then evaluated a number of modern developments related to contact mechanics, surface roughness, tribofilm formation and fluid-film layers. In particular, it looked at key fields driving tribology models including nanoparticle research and prosthetics. The study then sought out to understand the future trends in this research field.

Findings

The field of tribology, numerical modeling has shown to be a powerful tool, which is both time- and cost-effective when compared to standard bench testing. The characterization of tribological systems of interest fundamentally stems from the lubrication regimes designated in the Stribeck curve. The prediction of tribofilm formation, film thickness variation, fluid properties, asperity contact and surface deformation as well as the continuously changing interactions between such parameters is an essential challenge for proper modeling.

Originality/value

This paper highlights the major numerical modeling achievements in various disciplines and discusses their efficacy, assumptions and limitations in tribology research.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0076/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2024

Xiaoxuan Lin, Xiong Sang, Yuyan Zhu and Yichen Zhang

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate…

Abstract

Purpose

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate immersed in the lubricants.

Design/methodology/approach

Nano-AlN or nano-Al2O3 (0.1, 0.2, 0.3, 0.4 and 0.5 Wt.%) functional fluids were prepared. Their tribological properties were tested by an MRS-10A four-ball friction tester and a ball-on-plate configuration, and scanning electron microscope observed the worn surface of the plate.

Findings

An increase in nano-AlN and Al2O3 content enhances the extreme pressure and anti-wear performance of the lubricant. The best performance is achieved at 0.5 Wt.% of nano-AlN and 0.3 Wt.% of nano-Al2O3 with PB of 834 N and 883 N, a coefficient of friction (COF) of approximately 0.07 and 0.06, respectively. Furthermore, the inclusion of nano-AlN and nano-Al2O3 particles in the lubricant enhances its extreme pressure performance and reduces wear, leading to decreased wear spot depth. The lubricating effect of the nano-Al2O3 lubricant on the surface of the copper-steel composite plate is slightly superior to that of the nano-AlN lubricant, with a COF reaching 0.07. Both lubricants effectively fill and lubricate the holes on the surface of the copper-steel composite plate.

Originality/value

AlN and Al2O3 as water-based lubricants have excellent lubrication performance and can reduce the COF. It can provide some reference for the practical application of nano-water-based lubricants.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0255/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 June 2023

Penggao Zhang, Fei Feng, Xiu Feng and Long Wei

Magnetic fluid has excellent function used as lubricants in bearings and mechanical seals, and the purpose of this study is to investigate the sealing performance in a spiral…

Abstract

Purpose

Magnetic fluid has excellent function used as lubricants in bearings and mechanical seals, and the purpose of this study is to investigate the sealing performance in a spiral groove mechanical seal lubricated by magnetic fluid.

Design/methodology/approach

The sealing characteristic parameters of the lubricating film between the end faces of two sealing rings were calculated based on the Muijderman narrow groove theory for a spiral groove mechanical seal lubricated by magnetic fluid. The film thickness was determined according to the balanced forces on the rotating ring, and the effects of operating conditions, intensity of the magnetic field and diameter of nanoparticles on the sealing characteristics were investigated.

Findings

It has been found that the intensity of magnetic field has a great effect on the viscosity of magnetic fluid, film thickness and friction torque while has a little effect on the mass flux of magnetic fluid. The film thickness, mass flux of magnetic fluid and friction torque increase with the increasing volume fraction, rotating speed and diameter of magnetic nanoparticles in magnetic fluid. The mass flux of magnetic fluid decrease with the increasing closing force, and the friction torque decreases with the increase of media pressure.

Originality/value

The change of intensity of magnetic field can affect the viscosity of magnetic fluid and then changes the sealing performance in a mechanical seal lubricated by magnetic fluid. To reduce the mass flux of magnetic fluid and friction torque, the volume fraction, diameter of solid magnetic particles and film thickness should be 5%–7%, 8–10 nm and 2–9.3 µm, respectively.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2023-0032/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Talwinder Singh, Chandan Deep Singh and Rajdeep Singh

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in…

152

Abstract

Purpose

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in machining operations due to growing awareness of ecological and health issues, government strict environmental regulations and economic pressures. Therefore, the purpose of this study is to raise awareness of the minimum quantity lubrication (MQL) technique as a potential substitute for environmental restricted wet (flooded) machining situations.

Design/methodology/approach

The methodology adopted for conducting a review in this study includes four sections: establishment of MQL technique and review of MQL machining performance comparison with dry and wet (flooded) environments; analysis of the past literature to examine MQL turning performance under mono nanofluids (M-NF); MQL turning performance evaluation under hybrid nanofluids (H-NF); and MQL milling, drilling and grinding performance assessment under M-NF and H-NF.

Findings

From the extensive review, it has been found that MQL results in lower cutting zone temperature, reduction in cutting forces, enhanced tool life and better machined surface quality compared to dry and wet cutting conditions. Also, MQL under H-NF discloses notably improved tribo-performance due to the synergistic effect caused by the physical encapsulation of spherical nanoparticles between the nanosheets of lamellar structured nanoparticles when compared with M-NF. The findings of this study recommend that MQL with nanofluids can replace dry and flood lubrication conditions for superior machining performance.

Practical implications

Machining under the MQL regime provides a dry, clean, healthy and pollution-free working area, thereby resulting the machining of materials green and environmentally friendly.

Originality/value

This paper describes the suitability of MQL for different machining operations using M-NF and H-NF.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0131/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 May 2023

Soumya Ranjan Guru, Chetla Venugopal and Mihir Sarangi

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the…

Abstract

Purpose

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the present investigation, soybean oil is served as the foundational oil due to its eco-friendliness and status as a vegetable oil with two additives, named polytetrafluoroethylene (PTFE) and molybdenum disulfide (MoS2).

Design/methodology/approach

As additives, PTFE and MoS2 are used; PTFE is renowned for its anti-friction (AF) properties, while MoS2 is a solid lubricant with anti-wear (AW) properties. This investigation examines the synergistic impact of AF and AW additions in vegetable oil. The lubricity of the base oil is measured by using a four-ball tester, and the wear properties of the oil at different additive amounts are determined by using a universal tribometer.

Findings

PTFE (at 5 Wt.%) and MoS2 (at 1 Wt.%) were found to improve the tribological performance of the base oil. The weld load is significantly increased when 5 Wt.% of PTFE + MoS2 is added to the base oil.

Originality/value

A better tribological characteristic can be achieved by combining additives that amount to less than 1% of the base oil. In experiments with highly concentrated MoS2, the adequate pressure improved dramatically, but the lubricant’s tribological characteristics did not.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0321/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 65