Search results

1 – 10 of over 3000
Article
Publication date: 9 May 2023

Anurag Mishra, Pankaj Dutta and Naveen Gottipalli

The supply chain (SC) of the fast-moving consumer goods (FMCG) sector in India witnessed a significant change soon after introducing the Goods and Services Tax (GST). With the…

Abstract

Purpose

The supply chain (SC) of the fast-moving consumer goods (FMCG) sector in India witnessed a significant change soon after introducing the Goods and Services Tax (GST). With the initiation of this tax, companies started moving from individual state-wise warehouses to consolidation warehouses model to save costs. This paper proposes a model that frames a mathematical formulation to optimize the distribution network in the downstream SC by considering the complexities of multi-product lines, multi-transport modes and consolidated warehouses.

Design/methodology/approach

The model is designed as mixed-integer linear programming (MILP), and an algorithm is developed that works on the feedback loop mechanism. It optimizes the transportation and warehouses rental costs simultaneously with impact analysis.

Findings

Total cost is primarily influenced by the critical factor transportation price rather than the warehouse rent. The choice of warehouses at prime locations was a trade-off between a lower distribution cost and higher rent tariffs.

Research limitations/implications

The study enables FMCG firms to plan their downstream SC efficiently and to be in line with the recent trend of consolidation of warehouses. The study will help SC managers solve complexities such as multi-product categories, truck selection and consolidation warehouse selection problems and find the optimum value for each.

Originality/value

The issues addressed in the proposed work are transporting products with different sizes and weights, selecting consolidated warehouses, selecting suitable vehicles for transportation and optimizing distance in the distribution network by considering consolidated warehouses.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 3
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 21 July 2023

Deepak Datta Nirmal, K. Nageswara Reddy and Sujeet Kumar Singh

The main purpose of this study is to provide a comprehensive review and critical insights of the application of fuzzy methods in modeling, assessing and understanding the various…

Abstract

Purpose

The main purpose of this study is to provide a comprehensive review and critical insights of the application of fuzzy methods in modeling, assessing and understanding the various aspects of green and sustainable supply chains (SSCs).

Design/methodology/approach

The present study conducts a systematic literature review (SLR) and bibliometric analysis of 252 research articles. This study employs various tools such as VOSviewer version 1.6.10, Publish or Perish, Mendeley and Excel that aid in descriptive analysis, bibliometric analysis and network visualization. These tools have been used for performing citation analysis, top authors' analysis, co-occurrence of keywords, cluster and content analysis.

Findings

The authors have divided the literature into seven application areas and discussed detailed insights. This study has observed that research in the social sustainability area, including various issues like health and safety, labor rights, discrimination, etc. is scarce. Integration of the Industry 4.0 technologies like blockchain, big data analytics, Internet of Things (IoT) with the sustainable and green supply chain (GSC) is a promising field for future research.

Originality/value

The authors' contribution primarily lies in providing the integrated framework which shows the changing trends in the use of fuzzy methods in the sustainability area classifying and consolidating green and sustainable supply chain management (SSCM) literature in seven major areas where fuzzy methods are predominantly applied. These areas have been obtained after the analysis of clusters and content analysis of the literature presenting key insights from the past and developing the conceptual framework for future research studies.

Details

Benchmarking: An International Journal, vol. 31 no. 5
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 26 December 2023

Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi and Songyi Wang

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental…

Abstract

Purpose

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.

Design/methodology/approach

This study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.

Findings

The result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.

Research limitations/implications

The optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.

Originality/value

In prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.

Details

Industrial Management & Data Systems, vol. 124 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 22 August 2024

Issam Krimi, Ziyad Bahou and Raid Al-Aomar

This work conducts a comprehensive analysis of how to incorporate resilience and sustainability into capacity expansion strategies for business-to-business (B2B) chemical supply…

Abstract

Purpose

This work conducts a comprehensive analysis of how to incorporate resilience and sustainability into capacity expansion strategies for business-to-business (B2B) chemical supply chains. This study aims to guide both researchers and managers on ensuring profitability in B2B chemical supply chains while minimizing environmental impacts, complying with regulations and mitigating disruptions and risks.

Design/methodology/approach

A systematic literature review is conducted to analyze the interplay between sustainability and resilience in chemical B2B supply chains, specify the quantitative and qualitative methods used to tackle this challenge and identify the drivers and barriers concerning capacity expansion. In addition, a comprehensive conceptual framework is suggested to outline a compelling research agenda.

Findings

The findings emphasize the increasing importance of modeling and resolving decision-making challenges related to sustainable and resilient supply chains, particularly in capital-intensive chemical industries. Yet, there is no standardized strategy for addressing these challenges. The predominant solution methods are heuristic and metaheuristic, and the selection of performance metrics tends to be empirical and tailored to specific cases. The main barriers to achieving sustainability and resilience arise from resource limitations within the supply chain. Conversely, the key drivers of performance focus on enhancing efficiency, competitiveness, cost effectiveness and risk management.

Practical implications

This work offers practitioners a conceptual framework that synthesizes the knowledge and tackles the challenges of designing sustainable and resilient supply chains as well as managing their operations in the context of B2B chemical supply chains. Results provide a practical guide for navigating the complex interplay of sustainability, resilience and chemical supply chain expansion.

Originality/value

The key concepts and dimensions associated with capacity expansion planning for a resilient and sustainable chemical supply chain are identified through structured and comprehensive analyses of existing literature. A conceptual framework is proposed for delineating the intersections among sustainability, resilience and chemical supply chain expansions. This mapping endeavor aims to facilitate a future characterized by the deployment of a nexus of resilience and sustainability in chemical supply chains. To this end, a promising future research agenda is accordingly outlined.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 4 January 2024

Nishant Kulshrestha, Saurabh Agrawal and Deep Shree

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this…

Abstract

Purpose

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this article is aimed toward a systematic literature review on SPM in Industry 4.0 era and identification of research gaps in the field with prospects.

Design/methodology/approach

Research articles were reviewed and analyzed through a content-based analysis using four step process model. The proposed framework consists of five categories such as Inventory Management, Types of Spares, Circularity based on 6Rs, Performance Indicators and Strategic and Operational. Based on these categories, a total of 118 research articles published between 1998 and 2022 were reviewed.

Findings

The technological solutions of Industry 4.0 concepts have provided numerous opportunities for SPM. Industry 4.0 hi-tech solutions can enhance agility, operational efficiency, quality of product and service, customer satisfaction, sustainability and profitability.

Research limitations/implications

The review of articles provides an integrated framework which recognizes implementation issues and challenges in the field. The proposed framework will support academia and practitioners toward implementation of technological solutions of Industry 4.0 in SPM. Implementation of Industry 4.0 in SPM may help in improving the triple bottom line aspect of sustainability which can make significant contribution to academia, practitioners and society.

Originality/value

The examination uncovered a scarcity of research in the intersection of SPM and Industry 4.0 concepts, suggesting a significant opportunity for additional investigative efforts.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 11 October 2023

Ruchi Mishra, Hemlata Gangwar and Saumyaranjan Sahoo

The objective of this research is to evaluate and rank the factors influencing omnichannel (OC) logistics, while also investigating the significant impact of big data analytics in…

Abstract

Purpose

The objective of this research is to evaluate and rank the factors influencing omnichannel (OC) logistics, while also investigating the significant impact of big data analytics in improving these drivers of OC logistics.

Design/methodology/approach

Using exploratory sequential mixed method design, an in-person interview survey was conducted to identify and stratifies the enablers of OC retailing. These interviews were supplemented with a case study in an apparel firm to prioritise the enablers of OC logistics. Further, a survey was conducted to understand the role of big data analytics in improving drivers of OC logistics as well as the role of Individual capability and organisational capability in big data usage for omnichannel retailing.

Findings

Findings represent that information management is the most important driver followed by inventory management and network design for improving OC logistics. Further, significant relationship between big data analytics and drivers of omnichannel logistics has been reported.

Practical implications

This study identifies and classifies the drivers of OC retailing relating to their level of criticality in OC logistics which will assists practitioners to prioritise their tasks for the successful development of OC logistics. The study will also help practitioners to use BDA for developing the drivers of OC.

Originality/value

The study substantiates and adds to the BDA literature by emphasising the positive role of BDA in development of OC driver and highlighting the significant role of drivers of BDA in its usage.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

1958

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 6 April 2023

Marcelo Battesini and Jair Carlos Koppe

This study aims to propose an approach to assess the security of supply (SS) in a coal-fired electricity generation supply chain subject to public price regulation in Brazil. This…

Abstract

Purpose

This study aims to propose an approach to assess the security of supply (SS) in a coal-fired electricity generation supply chain subject to public price regulation in Brazil. This study characterizes the Brazilian scenario of coal-fired electricity generation, which represents less than 3.5% of the energy sources.

Design/methodology/approach

Data from six mining companies that supply a coal plant were analyzed in a case study. The risks were characterized and objectively estimated through a synthetic multidimensional index. Structural changes in the earnings before interest, taxes, depreciation, amortization and exploration indicator time series of coal companies (CC) were statistically detected.

Findings

Empirical evidence demonstrates that the supply chain has a low disruption risk (SS index equal to 0.74). However, when suppliers are individually analyzed, 48.64% of all coal shows moderated disruption risk, and 2.51% is under high risk. In addition, this study finds a drop in the financial results of CC related to public regulation of coal prices. This impacts the security of coal supply.

Research limitations/implications

This study discusses the influence of legal and regulatory policy risks in a coal power generation supply chain and the implications of the SS index as a management tool.

Originality/value

A novel SS index is presented and empirically operationalized, and its dimensions – environmental, occupational, operational, economic-financial and supply capacity – are analyzed.

Details

International Journal of Energy Sector Management, vol. 18 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 11 August 2022

Surya Prakash, Sameer Kumar, Gunjan Soni, Vipul Jain, Saty Dev and Charu Chandra

Collaboration methods are unique strategies that can help organizations hedge against external and internal supply chain risks without stressing their relationships with supply…

Abstract

Purpose

Collaboration methods are unique strategies that can help organizations hedge against external and internal supply chain risks without stressing their relationships with supply chain partners. However, selecting the most appropriate collaboration method from a given set of strategies is a multifaceted challenge. This paper aims to address this issue.

Design/methodology/approach

The decision maker's dilemma of fighting data uncertainty in input parameters to check the efficacy of a given collaboration or mitigation approach is tackled by the integration of Grey theory with the technique for order of preference by similarity to ideal solution (TOPSIS) method. The proposed technique is applied and tested for an Indian diesel generator-set manufacturer to identify the most apposite set of sustainable collaboration strategies.

Findings

The results showed that when a firm is bidding for different horizontal collaboration strategies across its supply chain system technology and resource-sharing-centered collaboration strategies are the prominent option. In the case of the company's vertical collaboration deployment, the focus should be kept on information sharing to achieve impactful collaboration. The outcome of the analysis helped the Indian manufacturer to adopt transparent order and production information sharing with its regional distributors and core suppliers within its supply chain.

Originality/value

This study demonstrates from a methodological perspective the successful application of the Grey-TOPSIS approach that effectively captures data uncertainty. It also integrates sustainability parameters in collaboration strategy criteria selections.

Details

Benchmarking: An International Journal, vol. 30 no. 9
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 19 May 2022

Merlin Sajini M.L., Suja S. and Merlin Gilbert Raj S.

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by…

Abstract

Purpose

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by renewable energy resources to scale back the power loss and to recover the voltage levels. Though several algorithms have already been proposed through the target of power loss reduction and voltage stability enhancement, further optimization of the objectives is improved by using a combination of heuristic algorithms like DE and particle swarm optimization (PSO).

Design/methodology/approach

The identification of the candidate buses for the location of DG units and optimal rating of DG units is found by a combined differential evolution (DE) and PSO algorithm. In the combined strategy of DE and PSO, the key merits of both algorithms are combined. The DE algorithm prevents the individuals from getting trapped into the local optimum, thereby providing efficient global optimization. At the same time, PSO provides a fast convergence rate by providing the best particle among the entire iteration to obtain the best fitness value.

Findings

The proposed DE-PSO takes advantage of the global optimization of DE and the convergence rate of PSO. The different case studies of multiple DG types are carried out for the suggested procedure for the 33- and 69-bus radial delivery frameworks and a real 16-bus distribution substation in Tamil Nadu to show the effectiveness of the proposed methodology and distribution system performance. From the obtained results, there is a substantial decrease in the power loss and an improvement of voltage levels across all the buses of the system, thereby maintaining the distribution system within the framework of system operation and safety constraints.

Originality/value

A comparison of an equivalent system with the DE, PSO algorithm when used separately and other algorithms available in literature shows that the proposed method results in an improved performance in terms of the convergence rate and objective function values. Finally, an economic benefit analysis is performed if a photo-voltaic based DG unit is allocated in the considered test systems.

1 – 10 of over 3000