Search results

1 – 10 of 25
Article
Publication date: 13 October 2021

Zhifang Wang, Jianguo Yu, Shangjing Lin, Junguo Dong and Zheng Yu

The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H adaptive

176

Abstract

Purpose

The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time.

Design/methodology/approach

In the paper, the authors propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system.

Findings

The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%.

Originality/value

This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.

Article
Publication date: 20 September 2023

Zhifang Wang, Quanzhen Huang and Jianguo Yu

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling…

Abstract

Purpose

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling network topology instability problem caused by unknown control communication faults during the operation of this system.

Design/methodology/approach

In the paper, the authors propose a neural network-based direct robust adaptive non-fragile fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network integrated system.

Findings

The simulation results show that the system eventually tends to be asymptotically stable, and the estimation error asymptotically tends to zero with the feedback adjustment of the designed controller. The system as a whole has good fault tolerance performance and autonomous learning approximation performance. The experimental results show that the wireless self-assembled network topology has good stability performance and can change flexibly and adaptively with scene changes. The stability performance of the wireless self-assembled network topology is improved by 66.7% at maximum.

Research limitations/implications

The research results may lack generalisability because of the chosen research approach. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

This paper designs a direct, robust, non-fragile adaptive neural network fault-tolerant controller based on the Lyapunov stability principle and neural network learning capability. By directly optimizing the feedback matrix K to approximate the robust fault-tolerant correction factor, the neural network adaptive adjustment factor enables the system as a whole to resist unknown control and communication failures during operation, thus achieving the goal of stable wireless self-assembled network topology.

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 August 2019

Ali Hajary, Seyed Ghodratollah Seifossadat, Reza Kianinezhad, Alireza Saffarian and Seyed Saeedollah Mortazavi

This paper aims to present a novel robust control method based on an adaptive PI controller (APIC) to compensate for different disturbances and unknown dynamics for multi-phase…

Abstract

Purpose

This paper aims to present a novel robust control method based on an adaptive PI controller (APIC) to compensate for different disturbances and unknown dynamics for multi-phase induction machines.

Design/methodology/approach

The gains of the APIC are adapted online according to the tracking error. Proposed APIC is accompanied with designed linear disturbance observer (LDO) to present robust behavior to machine parameter variations and fault disturbances.

Findings

The results show remarkable dynamic performance in both healthy and faulty conditions when the six-phase induction machine works under APIC and LDO schemes.

Originality/value

The proposed controller need not readjust current controllers for the post-fault condition. The developed Simulink model efficiency is confirmed through experimental tests.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 August 2021

Dinesh D. Dhadekar, Ajay Misra and S.E. Talole

The purpose of the paper is to design a nonlinear dynamic inversion (NDI) based robust fault-tolerant control (FTC) for aircraft longitudinal dynamics subject to system…

Abstract

Purpose

The purpose of the paper is to design a nonlinear dynamic inversion (NDI) based robust fault-tolerant control (FTC) for aircraft longitudinal dynamics subject to system nonlinearities, aerodynamic parametric variations, external wind disturbances and fault/failure in actuator.

Design/methodology/approach

An uncertainty and disturbance estimator (UDE) technique is used to provide estimate of total disturbance enabling its rejection and thereby achieving robustness to the proposed NDI controller. As needed in the NDI design, the successive derivatives of the output are obtained through an UDE robustified observer making the design implementable. Further, a control allocation scheme consigns control command from primary actuator to the secondary one in the event of fault/failure in the primary actuator.

Findings

The robustness is achieved against the perturbations mentioned above in the presence of actuator fault/failure.

Practical implications

Lyapunov analysis proves practical stability of the controller–observer structure. The efficacy and superiority of the proposed design has been demonstrated through Monte-Carlo simulation.

Originality/value

Unlike in many FTC designs, robustness is provided against system nonlinearities, aerodynamic parametric variations, external wind disturbances and sinusoidal input disturbance using a single control law which caters for fault-free, as well as faulty actuator scenario.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 August 2016

Yueming Zhi, Shun Jiang and Feng Pan

This paper is concerned with non-fragile robust H control problems for nonlinear networked control systems (NCSs) with time-varying delay and unknown actuator failures. The paper…

Abstract

Purpose

This paper is concerned with non-fragile robust H control problems for nonlinear networked control systems (NCSs) with time-varying delay and unknown actuator failures. The paper aims to discuss these issues.

Design/methodology/approach

The system parameters are allowed to have time-varying uncertainties and the actuator faults are unknown but whose upper and lower bounds are known. By using some lemmas, uncertainties can be replaces with the known values. By taking the exogenous disturbance and network transmission delay into consideration, a delay nonlinear system model is constructed.

Findings

Based on Lyapunov stability theory, linear matrix inequalities (LMIs) and free weighting matrix methods, the sufficient conditions for the existence of the non-fragile robust H controller gain are derived and which can obtained by solving the LMIs. Finally, a numerical example is provided to illustrate the effectiveness of the proposed methods.

Originality/value

The introduced approach is interesting for NCSs with time-varying delay and unknown actuator failures.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 9 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 February 2024

Gerasimos G. Rigatos, Pierluigi Siano, Mohammed S. Al-Numay, Bilal Sari and Masoud Abbaszadeh

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet…

Abstract

Purpose

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet synchronous motors and five-phase asynchronous induction motors (IMs) are among the types of multiphase motors one can consider for the traction system of electric vehicles (EVs). By distributing the required power in a large number of phases, the power load of each individual phase is reduced. The cumulative rates of power in multiphase machines can be raised without stressing the connected converters. Multiphase motors are also fault tolerant because such machines remain functional even if failures affect certain phases.

Design/methodology/approach

A novel nonlinear optimal control approach has been developed for five-phase IMs. The dynamic model of the five-phase IM undergoes approximate linearization using Taylor series expansion and the computation of the associated Jacobian matrices. The linearization takes place at each sampling instance. For the linearized model of the motor, an H-infinity feedback controller is designed. This controller achieves the solution of the optimal control problem under model uncertainty and disturbances.

Findings

To select the feedback gains of the nonlinear optimal (H-infinity) controller, an algebraic Riccati equation has to be solved repetitively at each time-step of the control method. The global stability properties of the control loop are demonstrated through Lyapunov analysis. Under moderate conditions, the global asymptotic stability properties of the control scheme are proven. The proposed nonlinear optimal control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs.

Research limitations/implications

Comparing to other nonlinear control methods that one could have considered for five-phase IMs, the presented nonlinear optimal (H-infinity) control approach avoids complicated state-space model transformations, is of proven global stability and its use does not require the model of the motor to be brought into a specific state-space form. The nonlinear optimal control method has clear implementation stages and moderate computational effort.

Practical implications

In the transportation sector, there is progressive transition to EVs. The use of five-phase IMs in EVs exhibits specific advantages, by achieving a more balanced distribution of power in the multiple phases of the motor and by providing fault tolerance. The study’s nonlinear optimal control method for five-phase IMs enables high performance for such motors and their efficient use in the traction system of EVs.

Social implications

Nonlinear optimal control for five-phase IMs supports the deployment of their use in EVs. Therefore, it contributes to the net-zero objective that aims at eliminating the emission of harmful exhaust gases coming from human activities. Most known manufacturers of vehicles have shifted to the production of all-electric cars. The study’s findings can optimize the traction system of EVs thus also contributing to the growth of the EV industry.

Originality/value

The proposed nonlinear optimal control method is novel comparing to past attempts for solving the optimal control problem for nonlinear dynamical systems. It uses a novel approach for selecting the linearization points and a new Riccati equation for computing the feedback gains of the controller. The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 May 2013

Chao Guo, Huai‐Ning Wu, Biao Luo and Lei Guo

The air‐breathing hypersonic vehicle (AHV) includes intricate inherent coupling between the propulsion system and the airframe dynamics, which results in an intractable nonlinear…

Abstract

Purpose

The air‐breathing hypersonic vehicle (AHV) includes intricate inherent coupling between the propulsion system and the airframe dynamics, which results in an intractable nonlinear system for the controller design. The purpose of this paper is to propose an H∞ control method for AHV based on the online simultaneous policy update algorithm (SPUA).

Design/methodology/approach

Initially, the H∞ state feedback control problem of the AHV is converted to the problem of solving the Hamilton‐Jacobi‐Isaacs (HJI) equation, which is notoriously difficult to solve both numerically and analytically. To overcome this difficulty, the online SPUA is introduced to solve the HJI equation without requiring the accurate knowledge of the internal system dynamics. Subsequently, the online SPUA is implemented on the basis of an actor‐critic structure, in which neural network (NN) is employed for approximating the cost function and a least‐square method is used to calculate the NN weight parameters.

Findings

Simulation study on the AHV demonstrates the effectiveness of the proposed H∞ control method.

Originality/value

The paper presents an interesting method for the H∞ state feedback control design problem of the AHV based on online SPUA.

Article
Publication date: 19 July 2018

Imen Maalej, Donia Ben Halima Abid and Chokri Rekik

The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy…

Abstract

Purpose

The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy model subjected to stochastic noise and actuator faults.

Design/methodology/approach

An IT2 fuzzy augmented state observer is first developed to estimate simultaneously the system states and the actuator faults since this estimation is required for the design of the FTC control law. Furthermore, based on the information of the states and the faults estimate, an IT2 fuzzy state feedback controller is conceived to compensate for the faults effect and to ensure a good tracking performance between the healthy system and the faulty one. Sufficient conditions for the existence of the IT2 fuzzy controller and the IT2 fuzzy observer are given in terms of linear matrix inequalities which can be solved using a two-step computing procedure.

Findings

The paper opted for simulation results which are applied to the three-tank system. These results are presented to illustrate the effectiveness of the proposed FTC strategy.

Originality/value

In this paper, the problem of active FTC design for noisy and faulty nonlinear system represented by IT2 TS fuzzy model is treated. The developed IT2 fuzzy fault tolerant controller is designed such that it can guarantee the stability of the closed-loop system. Moreover, the proposed controller allows to accommodate for faults, presents a satisfactory state tracking performance and outperforms the traditional type-1 fuzzy fault tolerant controller.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 June 2021

Muhammad Taimoor, Xiao Lu, Hamid Maqsood and Chunyang Sheng

The objective of this research is to investigate various neural network (NN) observer techniques for sensors fault identification and diagnosis of nonlinear system in…

Abstract

Purpose

The objective of this research is to investigate various neural network (NN) observer techniques for sensors fault identification and diagnosis of nonlinear system in consideration of numerous faults, failures, uncertainties and disturbances. For the importunity of increasing the faults diagnosis and reconstruction preciseness, a new technique is used for modifying the weight parameters of NNs without enhancement of computational complexities.

Design/methodology/approach

Various techniques such as adaptive radial basis functions (ARBF), conventional radial basis functions, adaptive multi-layer perceptron, conventional multi-layer perceptron and extended state observer are presented. For increasing the fault detection preciseness, a new technique is used for updating the weight parameters of radial basis functions and multi-layer perceptron (MLP) without enhancement of computational complexities. Lyapunov stability theory and sliding-mode surface concepts are used for the weight-updating parameters. Based on the combination of these two concepts, the weight parameters of NNs are updated adaptively. The key purpose of utilization of adaptive weight is to enhance the detection of faults with high accuracy. Because of the online adaptation, the ARBF can detect various kinds of faults and failures such as simultaneous, incipient, intermittent and abrupt faults effectively. Results depict that the suggested algorithm (ARBF) demonstrates more confrontation to unknown disturbances, faults and system dynamics compared with other investigated techniques and techniques used in the literature. The proposed algorithms are investigated by the utilization of quadrotor unmanned aerial vehicle dynamics, which authenticate the efficiency of the suggested algorithm.

Findings

The proposed Lyapunov function theory and sliding-mode surface-based strategy are studied, which shows more efficiency to unknown faults, failures, uncertainties and disturbances compared with conventional approaches as well as techniques used in the literature.

Practical implications

For improvement of the system safety and for avoiding failure and damage, the rapid fault detection and isolation has a great significance; the proposed approaches in this research work guarantee the detection and reconstruction of unknown faults, which has a great significance for practical life.

Originality/value

In this research, two strategies such Lyapunov function theory and sliding-mode surface concept are used in combination for tuning the weight parameters of NNs adaptively. The main purpose of these strategies is the fault diagnosis and reconstruction with high accuracy in terms of shape as well as the magnitude of unknown faults. Results depict that the proposed strategy is more effective compared with techniques used in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 25