Search results

1 – 10 of over 16000
To view the access options for this content please click here
Book part
Publication date: 2 May 2006

Kevin W. Williams

The most basic solution for monitoring position and attitude of an UA is through direct line-of-sight. Because they are usually standing outside, a pilot that maintains…

Abstract

The most basic solution for monitoring position and attitude of an UA is through direct line-of-sight. Because they are usually standing outside, a pilot that maintains direct line-of-sight with the aircraft is usually referred to as the EP, as opposed to an internal pilot (IP) who obtains position and attitude information electronically while inside of a ground control station (GCS). Flight using an EP represents the most basic solution to the problem of separating the pilot from the aircraft while still enabling the pilot to monitor the location and attitude of the aircraft. Pilot perspective is changed from an egocentric to an exocentric point of view. Maintaining visual contact with the UA, the EP can control the aircraft using a hand-held radio control box. Many of these control boxes are similar to those used by radio-controlled aircraft hobbyists and provide direct control of the flight surfaces of the aircraft through the use of joysticks on the box. Very little automation is involved in the use of such boxes, which control the flight surfaces of the aircraft.

Details

Human Factors of Remotely Operated Vehicles
Type: Book
ISBN: 978-0-76231-247-4

To view the access options for this content please click here
Article
Publication date: 5 April 2021

Grzegorz Henryk Kopecki

Indirect (fly-by-wire) control systems for general aviation aircraft and unmanned aircraft vehicles (UAV) control systems enable the decoupling of control surfaces. This…

Abstract

Purpose

Indirect (fly-by-wire) control systems for general aviation aircraft and unmanned aircraft vehicles (UAV) control systems enable the decoupling of control surfaces. This method of aircraft control is different from classical approach. The purpose of the article is to show the aircraft can be controlled even if the control control surfaces are blocked.

Design/methodology/approach

The concept discussed here relies on model reference adaptive control. The approach presented requires modifications of aircraft linearized model. In this paper, an example of roll angle control is shown.

Findings

During simulations the system worked properly with control surfaces partially blocked, if the blockage appeared close to neutral position. Exemplary simulations are shown in the text.

Practical implications

The solution presented was implemented on a UAV autopilot. Hardware in the loop simulations were performed, which shows the potential of practical usage.

Originality/value

Aircraft control, as discussed in this paper, gives the possibility of aircraft control and stable flight before a fault is detected, which increases the safety level.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 8 March 2021

Tomasz Rogalski, Paweł Rzucidło, Stanisław Noga and Jacek Prusik

The purpose of this paper is to present the idea of automatic flight control algorithms capable of performing an Immelmann turn manoeuvre automatically. This is a case of…

Abstract

Purpose

The purpose of this paper is to present the idea of automatic flight control algorithms capable of performing an Immelmann turn manoeuvre automatically. This is a case of a manoeuvre far removed from so-called standard flight. The character of this manoeuvre and the range of changes in the aircraft flight parameters restrict the application of standard control algorithms. Furthermore, the possibility of acquiring full and detailed information about the aircraft’s flight parameters is limited in such cases. This paper seeks to analyse an alternative solution that can be applied in some specific cases.

Design/methodology/approach

This paper uses theoretical discussion and breakdowns to create the basics for development of structures of control algorithms. A simplified analytical approach was applied to tune regulators and the results of the research were verified in a series of software-in-the loop computer simulations.

Findings

The structure of the control system enabling aerobatic flight (with the Immelmann turn as the selected example) was identified and the method for tuning the regulators is also presented.

Practical implications

It could serve as a foundation for autopilots working in non-conventional flight states and aircraft automatic recovery systems.

Originality/value

This paper presents the author’s original approach to aircraft automatic control when high control precision is not the priority and not all flight parameters can be precisely measured.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 21 July 2020

Tomasz Rogalski, Paweł Rzucidło and Jacek Prusik

The paper aims to present an idea of automatic control algorithms dedicated to both small manned and unmanned aircraft, capable to perform spin maneuver automatically…

Abstract

Purpose

The paper aims to present an idea of automatic control algorithms dedicated to both small manned and unmanned aircraft, capable to perform spin maneuver automatically. This is a case of maneuver far away from so-called standard flight. The character of this maneuver and the range of aircraft flight parameters changes restrict application of standard control algorithms. Possibility of acquisition full information about aircraft flight parameters is limited as well in such cases. This paper analyses an alternative solution that can be applied in some specific cases.

Design/methodology/approach

The paper uses theoretical discussion and breakdowns to create basics for development of structures of control algorithms. Simplified analytical approach was applied to tune regulators. Results of research were verified in series of software-in-the loop, computer simulations.

Findings

The structure of the control system enabling aerobatic flight (spin flight as example selected) was found and the method how to tune regulators was presented as well.

Practical implications

It could be a fundament for autopilots working in non-conventional flight states and aircraft automatic recovery systems.

Originality/value

The paper presents author’s original approach to aircraft automatic control when high control precision is not the priority, and not all flight parameters can be precisely measured.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 27 September 2018

Tomasz Rogalski

This paper aims to present the idea of an automatic control system dedicated to small manned and unmanned aircraft performing manoeuvres other than those necessary to…

Abstract

Purpose

This paper aims to present the idea of an automatic control system dedicated to small manned and unmanned aircraft performing manoeuvres other than those necessary to perform a so-called standard flight. The character of these manoeuvres and the range of aircraft flight parameter changes restrict application of standard control algorithms. In many cases, they also limit the possibility to acquire complete information about aircraft flight parameters. This paper analyses an alternative solution that can be applied in such cases. The loop manoeuvre, an element of aerobatic flight, was selected as a working example.

Design/methodology/approach

This paper used theoretical discussion and breakdowns to create basics for designing structures of control algorithms. A simplified analytical approach was then applied to tune regulators. Research results were verified in a series of computer-based software-in-the-loop rig test computer simulations.

Findings

The structure of the control system enabling aerobatic flight was found and the method for tuning regulators was also created.

Practical implications

The findings could be a foundation for autopilots working in non-conventional flight scenarios and automatic aircraft recovery systems.

Originality/value

This paper presents the author’s original approach to aircraft automated control where high precision control is not the priority and flight parameters cannot be precisely measured or determined.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 2002

Andrzej Tomczyk

A proposal of the perspective solution of the general aviation aircraft control system is presented. The objective of the proposed concept for the control system is to…

Abstract

A proposal of the perspective solution of the general aviation aircraft control system is presented. The objective of the proposed concept for the control system is to assist pilots with limited aviation training by: automatic stabilization of the aircraft's attitude, altitude, airspeed, and heading and decoupling of the flight controls. The structure and main functions of the control system is presented, and method of control laws synthesis is proposed. Flight control system is based on the model‐following design technique. Two kinds of flight control systems are taken into consideration. The first solution is based on the optimal full‐state feedback controller, the second one is the simplified controller, using the easy observed states for feedback loop only. The project calculation of the flight control system for PZL‐110 “Koliber” aircraft, computer simulations and preliminary flight testing results will be presented.

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 16 May 2008

Andrzej Tomczyk

The purpose of this paper is to present analysis and primary evaluation of different control laws implemented on experimental indirect (fly‐by‐wire) flight control system…

Abstract

Purpose

The purpose of this paper is to present analysis and primary evaluation of different control laws implemented on experimental indirect (fly‐by‐wire) flight control system designed for perspective general aviation aircraft.

Design/methodology/approach

The control law tests have been accomplished on the flight simulation stand equipped with side‐stick, throttle lever and flight instrument display. Every evaluator was caring out 2‐4 five min instrument flights (IR) according to command shown on the screen. PZL‐110 general aviation aircraft properties and seven modes of control system operation were modeled and examined.

Findings

Results of evaluation by 45 commercial pilots are analyzed and handling qualities of the small aircraft equipped with the indirect flight control system (fly‐by‐wire) have been examined. In this way, the most convenient control law was chosen for design the user‐friendly, human‐centered, simplified software‐based flight control system.

Practical implications

The result of research can be implemented on real indirect flight control system dedicated to general aviation aircraft.

Originality/value

This paper presents the practical approach for analysis of handling qualities of general aviation aircraft equipped with indirect flight control system. This kind of works concern to military and transport airplanes are known, however there are no published work in the area of small aircraft so far.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 7 September 2010

Andrzej Tomczyk

The main targets of the work are analysis and simulation of flying laboratory performance. In particular, synthesis of control system for handling qualities change and…

Abstract

Purpose

The main targets of the work are analysis and simulation of flying laboratory performance. In particular, synthesis of control system for handling qualities change and evaluation in flight are taken into consideration.

Design/methodology/approach

Modification of handling qualities is obtained by applying indirect flight control system (FBW). The properties of the optimal controller are calculated through the indirect (implicit) model‐following method. In particular, the modified version based on the computer simulations is used.

Findings

Calculation and simulation concern the synthesis of desired handling qualities of the general aviation aircraft PZL‐M20 “Mewa” equipped with indirect (FBW) experimental flight control system. Results of the simulation show that the flying laboratory has the same properties as modeled aircraft, and it is possible to say that handling properties concern attitude orientation of the experimental aircraft is similar to modeled commuter aircraft.

Practical implications

The result of research can be implemented on a project of the flying laboratory based on general aviation aircraft PZL M20 “Mewa”.

Originality/value

The paper presents the practical approach for synthesis of the “Simplified total in flight simulator” performance which can be used for analysis of handling qualities of general aviation aircraft equipped with FBW. Research of this type focuses on military and transport airplanes however, there are no published works in the area of small aircraft so far.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 1 November 1964

This aircraft, or more exactly this integrated weapons system, is undoubtedly of major importance to both the British aircraft industry and the Royal Air Force. It is…

Abstract

This aircraft, or more exactly this integrated weapons system, is undoubtedly of major importance to both the British aircraft industry and the Royal Air Force. It is beyond question the most exacting project which the British industry has undertaken and as such has demanded adoption of the latest techniques, materials, equipment and management procedures as well as pursuit of research and development programmes on an unprecedented scale. In terms of air power, this system represents a substantial advance on any comparable aircraft or system currently in service and will give the Royal Air Force a strike and reconnaissance capability at high and low level which is possibly unmatched by any other air force in the world. The design philosophy of the TSR‐2 as it applies to an aircraft designed primarily for the high‐speed, low‐level strike/reconnaissance role was described in detail in the December 1963 issue of Aircraft Engineering (Ref. 1) but since that initial appraisal of the TSR‐2 was written some eleven months ago, there has been a gradual release of further information concerning the aircraft, its systems, power plant and equipment. It is the purpose of this article to bring the story up to date in that particular context, although it should be emphasized that the TSR‐2 is still subject to the strictest security embargo and it will be many years before a detailed study of the complete weapons system can be published. It is not intended to cover the same ground as the earlier article (Ref. 1) attempted but, before proceeding to detailed consideration of the systems, a brief overall description of the aircraft is given for the sake of completeness.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 11
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 11 October 2018

Pavel Zikmund, Miroslav Macík, Petr Dvořák and Zdeněk Míkovec

This paper aims to present a state-of-the-art review in various fields of interest, leading to a new concept of bio-inspired control of small aircraft. The main goal is to…

Abstract

Purpose

This paper aims to present a state-of-the-art review in various fields of interest, leading to a new concept of bio-inspired control of small aircraft. The main goal is to improve controllability and safety in flying at low speeds.

Design/methodology/approach

The review part of the paper gives an overview of artificial and natural flow sensors and haptic feedback actuators and applications. This background leads to a discussion part where the topics are synthesized and the trend in control of small aircraft is estimated.

Findings

The gap in recent aircraft control is identified in the pilot–aircraft interaction. A pilot’s sensory load is discussed and several recommendations for improved control system architecture are laid out in the paper.

Practical implications

The paper points out an opportunity for a following research of suggested bio-inspired aircraft control. The control is based on the artificial feeling of aerodynamic forces acting on a wing by means of haptic feedback.

Originality/value

The paper merges two research fields – aircraft control and human–machine interaction. This combination reveals new possibilities of aircraft control.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 16000