Search results

1 – 10 of 38
Article
Publication date: 16 April 2020

Mohammad Jafar Zandzadeh, Mohsen Saniei and Reza Kianinezhad

This paper aims to present a modified space vector pulse width modulation (SVPWM) technique for six-phase induction motor drive based on common-mode voltage (CMV) and current…

Abstract

Purpose

This paper aims to present a modified space vector pulse width modulation (SVPWM) technique for six-phase induction motor drive based on common-mode voltage (CMV) and current losses which are two important issues affecting drive system behavior and quality.

Design/methodology/approach

It is shown that the presence of z-component currents and the presence of CMV in six-phase drive system are two major limiting factors in space vector selection. The behavior of several space vector selections in a two-level inverter considering minimum CMV and z-components is investigated. Then, the space vectors in a three-level inverter is analyzed and tried to explore an SVM technique with better behavior.

Findings

The analyses show that all the problems cannot be solved in a six-phase drive system with two-level inverter despite having 64 space vectors; this study tried to overcome the limitations by exploring space vectors in a three-level inverter.

Originality/value

The proposed pulse width modulation (PWM) strategy leads to minimum current distortion and undesired current components with zero CMV and modest torque ripple.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 August 2019

Ali Hajary, Seyed Ghodratollah Seifossadat, Reza Kianinezhad, Alireza Saffarian and Seyed Saeedollah Mortazavi

This paper aims to present a novel robust control method based on an adaptive PI controller (APIC) to compensate for different disturbances and unknown dynamics for multi-phase…

Abstract

Purpose

This paper aims to present a novel robust control method based on an adaptive PI controller (APIC) to compensate for different disturbances and unknown dynamics for multi-phase induction machines.

Design/methodology/approach

The gains of the APIC are adapted online according to the tracking error. Proposed APIC is accompanied with designed linear disturbance observer (LDO) to present robust behavior to machine parameter variations and fault disturbances.

Findings

The results show remarkable dynamic performance in both healthy and faulty conditions when the six-phase induction machine works under APIC and LDO schemes.

Originality/value

The proposed controller need not readjust current controllers for the post-fault condition. The developed Simulink model efficiency is confirmed through experimental tests.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 July 2020

Ghoulemallah Boukhalfa, Sebti Belkacem, Abdesselem Chikhi and Said Benaggoune

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral…

1231

Abstract

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral derivative controller (PID) in the DTC control loops of dual star induction motor (DSIM). The fuzzy controller is insensitive to parametric variations, however, with the PSO-based optimization approach we obtain a judicious choice of the gains to make the system more robust. According to Matlab simulation, the results demonstrate that the hybrid DTC of DSIM improves the speed loop response, ensures the system stability, reduces the steady state error and enhances the rising time. Moreover, with this controller, the disturbances do not affect the motor performances.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 25 October 2019

Hossine Guermit, Katia Kouzi and Sid Ahmed Bessedik

This paper aims to present a contribution to improve the performance of vector control scheme of double star induction motor drive (DSIM) by using an optimized synergetic control…

Abstract

Purpose

This paper aims to present a contribution to improve the performance of vector control scheme of double star induction motor drive (DSIM) by using an optimized synergetic control approach. The main advantage of synergetic control is that it supports all parametric and nonparametric uncertainties, which is not the case in several control strategies.

Design/methodology/approach

The suggested controller is developed based on the synergistic control theory and the particle swarm optimization (PSO) algorithm which allow to obtain the optimal parameter of suggested controller to improve the performance of control system.

Findings

To show the benefits of proposed controller, a comparative simulation results between conventional PI controller, sliding mode controller and suggested controller were carried out.

Originality/value

The obtained simulation results illustrate clearly that synergetic controller ensures a rapid response, asymptotic stability of the closed-loop system in the all range operating condition and system robustness in presence of parameter variation in all range of operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 November 2021

Jiajie Wu, Zebin Yang, Xiaodong Sun and Ding Wang

The purpose of the control method proposed in this paper is to address the problem of the poor anti-interference of the suspension winding current in the traditional bearingless…

Abstract

Purpose

The purpose of the control method proposed in this paper is to address the problem of the poor anti-interference of the suspension winding current in the traditional bearingless induction motor (BL-IM) direct suspension force control process.

Design/methodology/approach

A model predictive direct suspension force control of a BL-IM based on sliding mode observer is proposed in this paper. The model predictive control (MPC) is introduced to the traditional direct suspension force control to improve the anti-interference of the suspension current. A sliding mode flux linkage observer is designed and applied to the MPC system, which reduces the error of the parameter observation and improves the robustness of the system. The strategy is designed and implemented in the MATLAB/Simulink and the two-level AC speed regulation platform.

Findings

The simulation and experimental results show that the performance of the BL-IM under the control method proposed in this paper is better than that under the traditional direct suspension force control, and the suspension performance of the motor and the anti-interference of the control system are improved.

Originality/value

This study helps to improve the suspension performance of the motor and the anti-interference of the control system.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 April 2020

Sathishkumar Kaliyavarathan and Sivakumaran T.S.

The purpose of this paper is to study the development of novel multiphase induction motor (MPIM) with copper die cast rotor in the drive system of electric propulsion vehicles…

Abstract

Purpose

The purpose of this paper is to study the development of novel multiphase induction motor (MPIM) with copper die cast rotor in the drive system of electric propulsion vehicles (EPV). It is estimated that the manufacturers are concerned about high torque,Efficiency, motor life, energy conservation and high thermal tolerance. To ensure maximum torque and efficiency with multiphase winding and copper die cast technology to increasing high thermal tolerance, life, energy conversations. On other hand, it is very important of EPV application.

Design/methodology/approach

The focus of the investigation is threefold: the modified method carried out on MPIM both stator and rotor can overcome the current scenario problem facing by electric vehicles manufacture and developed perfect suitable electric motor for EPV applications. The design and simulation carried out finite element method (FEM) that was more accurate calculations. Finally developed prototype model of MPIM with copper die cast are discussed with conventional three phase Die casting Induction motor.

Findings

The paper confirmed the multiphase copper die-cast rotor induction motor (MDCrIM) is providing better performance than conventional motor. Proposed motor can bring additional advantage like heat tolerances, long life and energy conversations.

Originality/value

The experiments confirmed the MDCIM suitable for EPV Applications. The modified MDCIM of both stator and rotor are giving better result and good performance compared to conventional method.

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief…

1661

Abstract

Purpose

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief review of the state of the art in the area of electrical machines and power‐electronic systems for high‐power wind energy generation applications. As the first part of this paper, latest market penetration, current technology and advanced electrical machines are addressed.

Design/methodology/approach

After a short description of the latest market penetration of wind turbines with various topologies globally by the end of 2010 is provided, current wind power technology, including a variety of fixed‐ and variable‐speed (in particular with doubly‐fed induction generator (DFIG) and permanent magnet synchronous generator (PMSG) supplied with partial‐ and full‐power converters, respectively) wind power generation systems, and modern grid codes, is presented. Finally, four advanced electrical‐machine systems, viz., brushless DFIG, open winding PMSG, dual/multi 3‐phase stator‐winding PMSG and magnetic‐gear outer‐rotor PMSG, are identified with their respective merits and challenges for future high‐power wind energy applications.

Findings

For the time being, the gear‐drive DFIG‐based wind turbine is significantly dominating the markets despite its defect caused by mechanical gears, slip rings and brush sets. Meanwhile, direct‐drive synchronous generator, especially utilizing permanent magnets on its rotor, supplied with a full‐capacity power converter has become a more effective solution, particularly in high‐power offshore wind farm applications.

Originality/value

This first part of the paper reviews the latest market penetration of wind turbines with a variety of mature topologies, by summarizing their advantages and disadvantages. Four advanced electrical‐machine systems are selected and identified by distinguishing their respective merits and challenges for future high‐power wind energy applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2012

Asma Ben Rhouma and Ahmed Masmoudi

This paper deals with the analysis, the modeling, the control and the fault‐tolerance capability of a three‐switch inverter (TSI, also known delta‐inverter) fed fractional‐slot…

Abstract

Purpose

This paper deals with the analysis, the modeling, the control and the fault‐tolerance capability of a three‐switch inverter (TSI, also known delta‐inverter) fed fractional‐slot six‐phase brushless DC motor (BDCM) drive.

Design/methodology/approach

Following the presentation of the advantages of multi‐phase fractional‐slot brushless machines and the possibility of their association to TSI, the analysis of the operating sequences as well as the modeling of a TSI fed six‐phase BDCM drive are developed. Then, a dedicated control strategy of such a drive is synthesized. Finally, a case study is simulated considering both transient behaviour during the start‐up of the BDCM as well as a steady‐state one under healthy and faulty operations.

Findings

It has been found that the 60‐electrical degree shift between the six phases of the BDCM makes it simple to achieve its operating sequences with its armature fed by a TSI, considering a suitable anti‐parallel connection of the six phases.

Practical implications

Crucial cost benefits associated with improved compactness, reliability, and fault‐tolerance capability could be gained thanks to the integration of TSI fed six‐phase BDCM drives in large‐scale production industries, such as the automotive one.

Originality/value

The paper proposes an analysis of the operating sequences as well as the fault‐tolerance capability of TSI fed six‐phase BDCM drives.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2013

István Király

The part of the stator leakage inductance whose quantity changes with the coil pitch is the slot leakage inductance. The purpose of this paper is to determine an analytical…

Abstract

Purpose

The part of the stator leakage inductance whose quantity changes with the coil pitch is the slot leakage inductance. The purpose of this paper is to determine an analytical expression which accounts for various slot shapes and the coil pitch change. This approach contrasts with the standard one, in which the same characteristics are inaccurately assumed for each slot shape. A further advantage of the proposed analytical expression is that it can also be used to model the slot leakage inductance for different phase numbers.

Design/methodology/approach

From the calculated coefficients of a slot by the Finite Element Method (FEM), the characteristics of the slot leakage coefficients are determined by an analytical expression. This helps one to study the connection between the slot shape types and the characteristics of slot leakage coefficients for different phase numbers.

Findings

The coefficients, which describe the change of slot leakage, are not the same for every slot type. These inaccuracies can result in deviation from the presented values in the classical literature.

Originality/value

By use of parameters, gained from the FEM calculation of a slot, the characteristics of the slot leakage coefficient can be determined as the function of winding pitch for different phase numbers by an analytical expression. Good accuracy of the analytical method is verified by the determination of the characteristics from the measurement of the two‐, three‐ and six‐phase windings and by the finite element calculations. Beside the speed of the process, it gives an overview about the connection between the slot shape and the coefficients.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 April 2019

Hamdi Echeikh, Hichem Kesraoui, Ramzi Trabelsi, Atif Iqbal and Mohamed Faouzi Mimouni

This paper aims to deal with direct torque controller when the five-phase induction motor drive in faulty operation. Precisely, open-phase fault condition is contemplated. Also…

Abstract

Purpose

This paper aims to deal with direct torque controller when the five-phase induction motor drive in faulty operation. Precisely, open-phase fault condition is contemplated. Also, the DTC is combined with a speed-adaptive variable-structure observer based on sliding mode observer.

Design methodology/approach

Two novel features are presented. First, the concept of the virtual voltage vector is presented, which eliminates low-frequency harmonic currents and simplifies analysis. Second, speed information is introduced into the selection of the inverter states.

Findings

Direct torque control (DTC) is largely used in traditional three-phase drives as a backup to rotor-stator flux-oriented methods. The classic DTC strategy was primarily designed on the base of hysteresis controllers to control two independent variables (speed, torque and flux). Due to the additional degrees of freedom offered by multiphase machine, extensive works have been extended on the ensemble five-phase drives in healthy operation. In addition, the ability to continue the operation in faulty conditions is considering one of the main advantages of multiphase machines. One can find in the literature different approaches treating this subject. The applicability of DTC after the appearing of a fault has not been enclosed in the literature.

Originality/value

Theoretical development is presented in details followed by simulation results using Matlab/Simulink to analyze the performance of the drive, comparing with the behavior during healthy situation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 38