Search results

1 – 10 of 699
Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 25 July 2022

Sravanthi Chutke, Nandhitha N.M. and Praveen Kumar Lendale

With the advent of technology, a huge amount of data is being transmitted and received through the internet. Large bandwidth and storage are required for the exchange of data and…

Abstract

Purpose

With the advent of technology, a huge amount of data is being transmitted and received through the internet. Large bandwidth and storage are required for the exchange of data and storage, respectively. Hence, compression of the data which is to be transmitted over the channel is unavoidable. The main purpose of the proposed system is to use the bandwidth effectively. The videos are compressed at the transmitter’s end and reconstructed at the receiver’s end. Compression techniques even help for smaller storage requirements.

Design/methodology/approach

The paper proposes a novel compression technique for three-dimensional (3D) videos using a zig-zag 3D discrete cosine transform. The method operates a 3D discrete cosine transform on the videos, followed by a zig-zag scanning process. Finally, to convert the data into a single bit stream for transmission, a run-length encoding technique is used. The videos are reconstructed by using the inverse 3D discrete cosine transform, inverse zig-zag scanning (quantization) and inverse run length coding techniques. The proposed method is simple and reduces the complexity of the convolutional techniques.

Findings

Coding reduction, code word reduction, peak signal to noise ratio (PSNR), mean square error, compression percent and compression ratio values are calculated, and the dominance of the proposed method over the convolutional methods is seen.

Originality/value

With zig-zag quantization and run length encoding using 3D discrete cosine transform for 3D video compression, gives compression up to 90% with a PSNR of 41.98 dB. The proposed method can be used in multimedia applications where bandwidth, storage and data expenses are the major issues.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 5 December 2023

Steven Alexander Melnyk, Matthias Thürer, Constantin Blome, Tobias Schoenherr and Stefan Gold

This study focuses on (re-)introducing computer simulation as a part of the research paradigm. Simulation is a widely applied research method in supply chain and operations…

Abstract

Purpose

This study focuses on (re-)introducing computer simulation as a part of the research paradigm. Simulation is a widely applied research method in supply chain and operations management. However, leading journals, such as the International Journal of Operations and Production Management, have often been reluctant to accept simulation studies. This study provides guidelines on how to conduct simulation research that advances theory, is relevant, and matters.

Design/methodology/approach

This study pooled the viewpoints of the editorial team of the International Journal of Operations and Production Management and authors of simulation studies. The authors debated their views and outlined why simulation is important and what a compelling simulation should look like.

Findings

There is an increasing importance of considering uncertainty, an increasing interest in dynamic phenomena, such as the transient response(s) to disruptions, and an increasing need to consider complementary outcomes, such as sustainability, which many researchers believe can be tackled by big data and modern analytical tools. But building, elaborating, and testing theory by purposeful experimentation is the strength of computer simulation. The authors therefore argue that simulation should play an important role in supply chain and operations management research, but for this, it also has to evolve away from simply generating and analyzing data. Four types of simulation research with much promise are outlined: empirical grounded simulation, simulation that establishes causality, simulation that supplements machine learning, artificial intelligence and analytics and simulation for sensitive environments.

Originality/value

This study identifies reasons why simulation is important for understanding and responding to today's business and societal challenges, it provides some guidance on how to design good simulation studies in this context and it links simulation to empirical research and theory going beyond multimethod studies.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 6 March 2023

Ningshuang Zeng, Xuling Ye, Yan Liu and Markus König

The unstable labor productivity and periodic planning method cause barriers to improving construction logistics management. This paper aims to explore a demand-driven mechanism…

Abstract

Purpose

The unstable labor productivity and periodic planning method cause barriers to improving construction logistics management. This paper aims to explore a demand-driven mechanism for efficient construction logistics planning to record the material consumption, report the real-time demand and trigger material replenishment from off-site to on-site, which is aided by Building Information Modeling (BIM) and the Kanban technique.

Design/methodology/approach

This paper follows the design science research (DSR) principles to propose a system of designing and applying Kanban batch with 4D BIM for construction logistics planning and monitoring. Prototype development with comparative simulation experiments of a river remediation project is conducted to analyze the conventional and Kanban-triggered supply. Two-staged industrial interviews are conducted to guide and evaluate the system design.

Findings

The proposed BIM-enabled Kanban system enables construction managers and suppliers to better set integrated on- and off-site targets, report real-time demands and conduct collaborative planning and monitoring. The simulation results present significant site storage and schedule savings applying the BIM-enabled Kanban system. Feedback and constructive suggestions from practitioners are collected via interviews and analyzed for further development.

Originality/value

This paper brings to the limelight the benefits of implementing BIM-enabled demand-driven replenishment to remove waste from the material flow. This paper combines lean production theory with advanced information technology to solve construction logistics management problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 October 2023

Basil P. Tucker and Elaine Nash

The paper presents the initial groundwork for the development of a research agenda around the management control implications of employing workers with intellectual disability.

Abstract

Purpose

The paper presents the initial groundwork for the development of a research agenda around the management control implications of employing workers with intellectual disability.

Design/methodology/approach

The point of departure of this foundational enquiry is primarily prior analyses and critiques of empirical research into the employment of workers with intellectual disabilities.

Findings

The authors extend the management control framework advanced by Tessier and Otley (2012) by offering insights relating to the benefits and costs of both compliance as well as performance roles of management control systems (MCS). As such, the authors advocate potential avenues for further empirical investigation and also offer four broad ways in which the use of MCS is implicated in the employment of individuals with an intellectual disability by recognising that achieving compliance outcomes or achieving performance outcomes both carry associated benefits and costs.

Research limitations/implications

The extent to which management control research has engaged with the context of workers with intellectual disability is limited. However, this paper identifies some of the salient considerations underlying an agenda for further research in this area.

Social implications

The employment of workers with intellectual disabilities is by no means unprecedented. In many Western economies, there have in recent times been significant disability policy shifts, recognising the key role of employment in the financial security and social participation of people with disabilities, including those with intellectual disabilities. A key performance indicator stated in these policy positions is an increase in workforce participation for this group of people. However, an increase in the employment of such individuals is likely to represent significant implications in terms of prevailing conditions as well as new management control configurations that may be required.

Originality/value

The paper overviews existing knowledge about the employment of workers living with an intellectual disability and identifies areas relating to the management control implications of such arrangements within which more research is required.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 16 May 2023

Naila Fares, Jaime Lloret, Vikas Kumar, Guilherme F. Frederico and Oulaid Kamach

The purpose of the study is to propose a framework for fleet management and make suitable distribution solution choices in the food industry.

Abstract

Purpose

The purpose of the study is to propose a framework for fleet management and make suitable distribution solution choices in the food industry.

Design/methodology/approach

This study reviews the literature to examine food distribution criteria. These criteria are used in the analytic hierarchy process (AHP) assessment and combined with discrete events simulation in a structured framework, which is validated through an empirical study.

Findings

The empirical case results demonstrate that both the AHP and discrete events simulation converge toward the same solution in most cases.

Originality/value

This study contributes to the literature on distribution management and develops a framework that can both guide future research and aid logistics practitioners in analysing distribution decision-making systems in dynamic environments.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 January 2024

Wang Zhang, Lizhe Fan, Yanbin Guo, Weihua Liu and Chao Ding

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection…

Abstract

Purpose

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection correction system based on passive light vision sensors was designed using the Halcon software from MVtec Germany as a platform.

Design/methodology/approach

This paper proposes an adaptive correction system for welding guns and seams divided into image calibration and feature extraction. In the image calibration method, the field of view distortion because of the position of the camera is resolved using image calibration techniques. In the feature extraction method, clear features of the weld gun and weld seam are accurately extracted after processing using algorithms such as impact filtering, subpixel (XLD), Gaussian Laplacian and sense region for the weld gun and weld seam. The gun and weld seam centers are accurately fitted using least squares. After calculating the deviation values, the error values are monitored, and error correction is achieved by programmable logic controller (PLC) control. Finally, experimental verification and analysis of the tracking errors are carried out.

Findings

The results show that the system achieves great results in dealing with camera aberrations. Weld gun features can be effectively and accurately identified. The difference between a scratch and a weld is effectively distinguished. The system accurately detects the center features of the torch and weld and controls the correction error to within 0.3mm.

Originality/value

An adaptive correction system based on a passive light vision sensor is designed which corrects the field-of-view distortion caused by the camera’s position deviation. Differences in features between scratches and welds are distinguished, and image features are effectively extracted. The final system weld error is controlled to 0.3 mm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 June 2023

Hana Begić, Mario Galić and Uroš Klanšek

Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with…

Abstract

Purpose

Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with various formulations and solving methods. This problem can range from a simple scenario involving one source, one material and one destination to a more challenging and complex case involving multiple sources, multiple materials and multiple destinations. This paper presents an Internet of Things (IoT)-supported active building information modeling (BIM) system for optimized multi-project ready-mix concrete (RMC) delivery.

Design/methodology/approach

The presented system is BIM-based, IoT supported, dynamic and automatic input/output exchange to provide an optimal delivery program for multi-project ready-mix-concrete problem. The input parameters are extracted as real-time map-supported IoT data and transferred to the system via an application programming interface (API) into a mixed-integer linear programming (MILP) optimization model developed to perform the optimization. The obtained optimization results are further integrated into BIM by conventional project management tools. To demonstrate the features of the suggested system, an RMCDP example was applied to solve that included four building sites, seven eligible concrete plants and three necessary RMC mixtures.

Findings

The system provides the optimum delivery schedule for multiple RMCs to multiple construction sites, as well as the optimum RMC quantities to be delivered, the quantities from each concrete plant that must be supplied, the best delivery routes, the optimum execution times for each construction site, and the total minimal costs, while also assuring the dynamic transfer of the optimized results back into the portfolio of multiple BIM projects. The system can generate as many solutions as needed by updating the real-time input parameters in terms of change of the routes, unit prices and availability of concrete plants.

Originality/value

The suggested system allows dynamic adjustments during the optimization process, andis adaptable to changes in input data also considering the real-time input data. The system is based on spreadsheets, which are widely used and common tool that most stakeholders already utilize daily, while also providing the possibility to apply a more specialized tool. Based on this, the RMCDP can be solved using both conventional and advanced optimization software, enabling the system to handle even large-scale tasks as necessary.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 April 2024

Marwa Elnahass, Xinrui Jia and Louise Crawford

This study aims to examine the mediating effects of corporate governance mechanisms like the board of directors on the association between disruptive technology adoption by audit…

Abstract

Purpose

This study aims to examine the mediating effects of corporate governance mechanisms like the board of directors on the association between disruptive technology adoption by audit clients and the risk of material misstatements, including inherent risk and control risk. In particular, the authors study the mediating effects of board characteristics such as board size, independence and gender diversity.

Design/methodology/approach

Based on a sample of 100 audit clients listed on the FTSE 100 from 2015 to 2021, this study uses structural equation modelling to test the research objectives.

Findings

The findings indicate a significant and negative association between disruptive technology adoption by audit clients and inherent risk. However, there is no significant evidence observed for control risk. The utilisation of disruptive technology by the audit client has a significant impact on the board characteristics, resulting in an increase in board size, greater independence and gender diversity. The authors also find strong evidence that board independence mediates the association between disruptive technology usage and both inherent risk and control risk. In addition, board size and gender exhibit distinct and differential mediating effects on the association and across the two types of risks.

Research limitations/implications

The study reveals that the significant role of using disruptive technology by audit clients in reducing the risk of material misstatements is closely associated with the board of directors, which makes audit clients place greater emphasis on the construction of effective corporate governance.

Practical implications

This study offers essential primary evidence that can assist policymakers and standard setters in formulating guidance and recommendations for board size, independence and gender quotas, ensuring the enhancement of effective governance and supporting the future of audit within the next generation of digital services.

Social implications

With respect to relevant stakeholders, it is imperative for audit clients to recognise that corporate governance represents a fundamental means of addressing the ramifications of applying disruptive technology, particularly as they pertain to inherent and control risks within the audit client.

Originality/value

This study contributes to the existing literature by investigating the joint impact of corporate governance and the utilisation of disruptive technology by audit clients on inherent risk and control risk, which has not been investigated by previous research.

Details

Journal of Financial Reporting and Accounting, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 28 March 2024

Elisa Gonzalez Santacruz, David Romero, Julieta Noguez and Thorsten Wuest

This research paper aims to analyze the scientific and grey literature on Quality 4.0 and zero-defect manufacturing (ZDM) frameworks to develop an integrated quality 4.0 framework…

Abstract

Purpose

This research paper aims to analyze the scientific and grey literature on Quality 4.0 and zero-defect manufacturing (ZDM) frameworks to develop an integrated quality 4.0 framework (IQ4.0F) for quality improvement (QI) based on Six Sigma and machine learning (ML) techniques towards ZDM. The IQ4.0F aims to contribute to the advancement of defect prediction approaches in diverse manufacturing processes. Furthermore, the work enables a comprehensive analysis of process variables influencing product quality with emphasis on the use of supervised and unsupervised ML techniques in Six Sigma’s DMAIC (Define, Measure, Analyze, Improve and Control) cycle stage of “Analyze.”

Design/methodology/approach

The research methodology employed a systematic literature review (SLR) based on PRISMA guidelines to develop the integrated framework, followed by a real industrial case study set in the automotive industry to fulfill the objectives of verifying and validating the proposed IQ4.0F with primary data.

Findings

This research work demonstrates the value of a “stepwise framework” to facilitate a shift from conventional quality management systems (QMSs) to QMSs 4.0. It uses the IDEF0 modeling methodology and Six Sigma’s DMAIC cycle to structure the steps to be followed to adopt the Quality 4.0 paradigm for QI. It also proves the worth of integrating Six Sigma and ML techniques into the “Analyze” stage of the DMAIC cycle for improving defect prediction in manufacturing processes and supporting problem-solving activities for quality managers.

Originality/value

This research paper introduces a first-of-its-kind Quality 4.0 framework – the IQ4.0F. Each step of the IQ4.0F was verified and validated in an original industrial case study set in the automotive industry. It is the first Quality 4.0 framework, according to the SLR conducted, to utilize the principal component analysis technique as a substitute for “Screening Design” in the Design of Experiments phase and K-means clustering technique for multivariable analysis, identifying process parameters that significantly impact product quality. The proposed IQ4.0F not only empowers decision-makers with the knowledge to launch a Quality 4.0 initiative but also provides quality managers with a systematic problem-solving methodology for quality improvement.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 10 of 699