Search results

1 – 10 of over 1000
Article
Publication date: 13 July 2021

Abdulsamed Tabak

The purpose of this paper is to improve transient response and dynamic performance of automatic voltage regulator (AVR).

Abstract

Purpose

The purpose of this paper is to improve transient response and dynamic performance of automatic voltage regulator (AVR).

Design/methodology/approach

This paper proposes a novel fractional order proportional–integral–derivative plus derivative (PIλDµDµ2) controller called FOPIDD for AVR system. The FOPIDD controller has seven optimization parameters and the equilibrium optimizer algorithm is used for tuning of controller parameters. The utilized objective function is widely preferred in AVR systems and consists of transient response characteristics.

Findings

In this study, results of AVR system controlled by FOPIDD is compared with results of proportional–integral–derivative (PID), proportional–integral–derivative acceleration, PID plus second order derivative and fractional order PID controllers. FOPIDD outperforms compared controllers in terms of transient response criteria such as settling time, rise time and overshoot. Then, the frequency domain analysis is performed for the AVR system with FOPIDD controller, and the results are found satisfactory. In addition, robustness test is realized for evaluating performance of FOPIDD controller in perturbed system parameters. In robustness test, FOPIDD controller shows superior control performance.

Originality/value

The FOPIDD controller is introduced for the first time to improve the control performance of the AVR system. The proposed FOPIDD controller has shown superior performance on AVR systems because of having seven optimization parameters and being fractional order based.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2012

Soheil Ganjefar and Mohsen Farahani

Subsynchronous resonance (SSR) problem is often created in generator rotor systems with long shafts (non‐rigid shaft) and large inertias constituting a weakly damped mechanical…

Abstract

Purpose

Subsynchronous resonance (SSR) problem is often created in generator rotor systems with long shafts (non‐rigid shaft) and large inertias constituting a weakly damped mechanical system. When the electrical network resonance frequency (in which the transmission line is compensated by series capacitors) approaches shaft natural frequencies, the electrical system increases torsional torques amplitude on the shaft. The purpose of this paper is to propose a self‐tuning proportional, integral, derivative (PID) controller to damp the SSR oscillations in the power system with series compensated transmission lines.

Design/methodology/approach

To accommodate the PID controller in all power system loading conditions, the gradient descent (GD) method and a wavelet neural network (WNN) are used to update the PID gains on‐line. All parameters of the WNN are trained by the gradient descent method using adaptive learning rates (ALRs). The ALRs are derived from discrete Lyapunov stability theorem, which are applied to guarantee the convergence of the proposed control system. Also, the suggested controller is designed based on a non‐linear model.

Findings

The proposed self‐tuning PID controller is applied to a power system non‐linear model. Simulation results are used to demonstrate the effectiveness and performance of the proposed controller. It has been shown that self‐tuning PID is able to damp the SSR under any circumstances, because the WNN ensures the robustness of the controller. Simplicity and practicality of the proposed controller with its excellent performance make it ideal to be implemented in real excitation systems.

Originality/value

The proposed self‐tuning PID approach is interesting for the design of an intelligent control scheme based on non‐linear model to damp the torsional oscillations. In this suggested controller, the system conditions and requirements adjust on‐line the PID gains. On other words, to damp the SSR, PID gains are intelligently computed by the controlled system. The main contributions of this paper are: the overall control system is globally stable and hence, the SSR is controlled; the control error can be reduced to zero by appropriate chosen parameters and learning rates; and the self‐tuning PID can achieve favorable controlling performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 March 2012

Frank H. Bezzina and Simon Grima

The purpose of this paper is to investigate factors that safeguard or hinder the proper use of derivatives, with evidence from active users and controllers of derivatives.

2825

Abstract

Purpose

The purpose of this paper is to investigate factors that safeguard or hinder the proper use of derivatives, with evidence from active users and controllers of derivatives.

Design/methodology/approach

An online panel of 420 users and controllers of derivatives responded to a self‐report questionnaire that was purposely designed for the present study. Exploratory factor analysis was used to guide scale construction and the resulting factor scores were examined overall and across four demographic variables (gender, experience, education, position held with firm).

Findings

Factor analysis provided support for the five hypothesised dimensions of proper derivative usage: Risk management controls; Misuse; Expertise; Perception; and Benefits. Summary statistics of the factor scores revealed that the respondents agree that: they are giving proper attention to risk management controls; factors such as greed, politics, inappropriate standards and inadequate controls encourage misuse; they are capable of dealing with derivatives even in complex situations; derivatives are valuable financial instruments; and they are aware of the benefits derivatives provide to firms, when properly handled. However, some respondents reported contrasting views while the respondents' education, position held and experience with derivatives produced a significant impact on the factor scores. The implications of the findings are discussed.

Originality/value

This study provides a better understanding and assessment of five factors that affect the proper use of derivatives and addresses practical recommendations aimed at ensuring that the true values and qualities of the derivative instrument are not obscured.

Book part
Publication date: 22 November 2016

Simon Grima, Frank Bezzina and Inna Romānova

Derivatives are nowadays widely used globally both for speculative and hedging purposes. However, as experience shows, inadequate use of derivatives may cause severe problems and…

Abstract

Derivatives are nowadays widely used globally both for speculative and hedging purposes. However, as experience shows, inadequate use of derivatives may cause severe problems and even bankruptcy of firms. Thus, it is essential to help organizations design a robust proactive governance and internal control structure, which will help to prevent new financial debacles and scandals when using derivatives. Taking into account the frequent use and the growing fraud caused by derivatives, the aim of the paper is to identify considerations for internal control important to ensure better governance of firms using derivatives. The main findings are based on an analysis of interviews that were conducted with experts directly or indirectly involved with derivatives from different European countries. The interviews were semistructured following the approach proposed by Patton (1990). An analysis of the data collected from the interviews was carried out using a thematic approach. The paper identifies and analyzes the main “sources” of derivatives misuse, including poor design and mis-categorization of instruments, convenience to blame derivatives, unsophisticated players, insufficient regulatory environment, poorly designed internal controls, inadequate communication, poor firm culture, etc. It also provides an extensive analysis of the main recommendation for internal control concerning awareness of derivatives design, the human aspects, regulations, communication, knowledge, and training. Sound internal controls could avoid new debacles without adding other restrictions to the market. Moreover, it provides recommendations for internal control important to ensure better governance of firms using derivatives.

Details

Contemporary Issues in Finance: Current Challenges from Across Europe
Type: Book
ISBN: 978-1-78635-907-0

Keywords

Article
Publication date: 3 October 2016

Emre Kiyak

This study aims to present a method for the conceptual design and simulation of an aircraft flight control system.

Abstract

Purpose

This study aims to present a method for the conceptual design and simulation of an aircraft flight control system.

Design/methodology/approach

The design methodology is based on particle swarm optimization (PSO). PSO can be used to improve the performance of conventional controllers. The aim of the present study is threefold. First, it attempts to detect and isolate faults in an aircraft model. Second, it is to design a proportional (P) controller, a proportional derivative (PD) controller, a proportional-integral (PI) controller and a fuzzy controller for an aircraft model. Third, it is to design a PD controller for an aircraft using a PSO algorithm.

Findings

Conventional controllers, an intelligent controller and a PD controller-based PSO were investigated for flight control. It was seen that the P controller, the PI controller and the PD controller-based PSO caused overshoot. These overshoots were 18.5, 87.7 and 2.6 per cent, respectively. Overshoot was not seen using the PD controller or fuzzy controller. Steady state errors were almost zero for all controllers. The PD controller had the best settling time. The fuzzy controller was second best. The PD controller-based PSO was the third best, but the result was close to the others.

Originality/value

This study shows the implementation of the present algorithm for a specified space mission and also for study regarding variation of performance parameters. This study shows fault detection and isolation procedures and also controller gain choice for a flight control system. A comparison between conventional controllers and PD-based PSO controllers is presented. In this study, sensor fault detection and isolation are carried out, and, also, root locus, time domain analysis and Routh–Hurwitz methods are used to find the conventional controller gains which differ from other studies. A fuzzy controller is created by the trial and error method. Integral of squared time multiplied by squared error is used as a performance function type in PSO.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 March 2019

Prakash Chandra Sahu, Ramesh Chandra Prusty and Sidhartha Panda

The paper has proposed to implement gray wolf optimization (GWO)-based filter-type proportional derivative with (FPD) plus (1+ proportional integral) multistage controller in a…

Abstract

Purpose

The paper has proposed to implement gray wolf optimization (GWO)-based filter-type proportional derivative with (FPD) plus (1+ proportional integral) multistage controller in a three-area integrated source-type interlinked power network for achieving automatic generation control.

Design/methodology/approach

For analysis, a three area interconnected power system of which each area comprises three different generating units where thermal and hydro system as common. Micro sources like wind generator, diesel generator and gas unit are integrated with area1, area2 and area3 respectively. For realization of system nonlinearity some physical constraints like generation rate constraint, governor dead band and boiler dynamics are effected in the system.

Findings

The supremacy of multistage controller structure over simple proportional integral (PI), proportional integral, derivative (PID) and GWO technique over genetic algorithm, differential evolution techniques has been demonstrated. A comparison is made on performances of different controllers and sensitivity analysis on settling times, overshoots and undershoots of different dynamic responses of system as well as integral based error criteria subsequent a step load perturbation (SLP). Finally, sensitive analysis has been analyzed by varying size of SLP and network parameters in range ±50 per cent from its nominal value.

Originality/value

Design and implementation of a robust FPD plus (1 + PI) controller for AGC of nonlinear power system. The gains of the proposed controller are optimized by the application of GWO algorithm. An investigation has been done on the dynamic performances of the suggested system by conducting a comparative analysis with conventional PID controller tuned by various optimization techniques to verify its supremacy. Establishment of the robustness and sensitiveness of the controller by varying the size and position of the SLP, varying the loading of the system randomly and varying the time constants of the system.

Article
Publication date: 7 April 2021

Thomas George and V. Ganesan

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal…

Abstract

Purpose

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal design known as advanced cuttlefish optimizer and random decision forest that is combined performance of random decision forest algorithm (RDFA) and advanced cuttlefish optimizer (ACFO).

Design/methodology/approach

The proposed ACFO uses the concept of crossover and mutation operator depend on position upgrading to enhance its search behavior, calculational speed as well as convergence profile at basic cuttlefish optimizer.

Findings

Fractional order proportional-integrator-derivative (FOPID) controller, apart from as tuning parameters (kp, ki and kd) it consists of two extra tuning parameters λ and µ. In established technology, the increase of FOPID controller is adjusted to reach needed responses that demonstrated using RDFA theory as well as RDF weight matrices is probable to the help of the ACFO method. The uniqueness of the established method is to decrease the failure of the FOPID controller at greater order time delay method with the help of controller maximize restrictions. The objective of the established method is selected to consider parameters set point as well as achieved parameters of time-delay system.

Originality/value

In the established technique used to evade large order delays as well as reliability restrictions such as small excesses, time resolution, as well as fixed condition defect. These methods is implemented at MATLAB/Simulink platform as well as outcomes compared to various existing methods such as Ziegler-Nichols fit, curve fit, Wang method, regression and invasive weed optimization and linear-quadratic regression method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 3 December 2021

Haris Calgan

This study aims to design and implement a novel tilt integral sliding mode controller and observer for sensorless speed control of a permanent magnet synchronous motor (PMSM).

Abstract

Purpose

This study aims to design and implement a novel tilt integral sliding mode controller and observer for sensorless speed control of a permanent magnet synchronous motor (PMSM).

Design/methodology/approach

A control strategy combining the tilt integral derivative (TID) with sliding mode control (SMC) is proposed to determine the tilt integral sliding mode manifold. Using this manifold, tilt integral sliding mode controller (TISMC) and observer (TISMO) are designed. The stabilities are verified by using Lyapunov method. To prove the effectiveness and robustness of proposed methods, sensorless speed control of PMSM is performed for various operating conditions such as constant and variable speed references, load disturbance injection, parameter perturbation, whereas sensor noises are not taken into account. The performance of proposed method is compared with TID controller, proportional integral derivative controller and conventional SMO.

Findings

Simulation results demonstrate that TISMC and TISMO have better performance in all operating conditions. They are robust against parameter uncertainties and disturbances. TISM based sensorless control of PMSM is well guaranteed with superior performance.

Originality/value

The proposed method has not been tackled in the literature. By combining TID and SMC, novel tilt integral sliding manifold is presented and used in designing of the controller and observer. It is proven by Lyapunov method that errors converge to zero.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Abstract

Details

Financial Derivatives: A Blessing or a Curse?
Type: Book
ISBN: 978-1-78973-245-0

Article
Publication date: 2 June 2021

Kamel Sabahi, Amin Hajizadeh and Mehdi Tavan

In this paper, a novel Lyapunov–Krasovskii stable fuzzy proportional-integral-derivative (PID) (FPID) controller is introduced for load frequency control of a time-delayed…

Abstract

Purpose

In this paper, a novel Lyapunov–Krasovskii stable fuzzy proportional-integral-derivative (PID) (FPID) controller is introduced for load frequency control of a time-delayed micro-grid (MG) system that benefits from a fuel cell unit, wind turbine generator and plug-in electric vehicles.

Design/methodology/approach

Using the Lyapunov–Krasovskii theorem, the adaptation laws for the consequent parameters and output scaling factors of the FPID controller are developed in such a way that an upper limit (the maximum permissible value) for time delay is introduced for the stability of the closed-loop MG system. In this way, there is a stable FPID controller, the adaptive parameters of which are bounded. In the obtained adaptation laws and the way of stability analyses, there is no need to approximate the nonlinear model of the controlled system, which makes the implementation process of the proposed adaptive FPID controller much simpler.

Findings

It has been shown that for a different amount of time delay and intermittent resources/loads, the proposed adaptive FPID controller is able to enforce the frequency deviations to zero with better performance and a less amount of energy. In the proposed FPID controller, the increase in the amount of time delay leads to a small increase in the amount of overshoot/undershoot and settling time values, which indicate that the proposed controller is robust to the time delay changes.

Originality/value

Although the designed FPID controllers in the literature are very efficient in being applied to the uncertain and nonlinear systems, they suffer from stability problems. In this paper, the stability of the FPID controller has been examined in applying to the frequency control of a nonlinear input-delayed MG system. Based on the Lyapunov–Krasovskii theorem and using rigorous mathematical analyses, the stability conditions and the adaptation laws for the parameters of the FPID controller have been obtained in the presence of input delay and nonlinearities of the MG system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000