Search results

1 – 10 of 48
Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 January 2024

Sofiane Talbi, Mokadem Salem, Belaïd Mechab, Tewfik Ghomari, Ahmed Allem, Belabbes Bachir Bouiadjra and Benelmaarouf Mehdi

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is…

Abstract

Purpose

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is to assess the influence of delamination on repair performance.

Design/methodology/approach

An analytical and numerical study using the finite element method was conducted for a cracked plate repaired with a patch containing a pre-existing delamination defect. The method for defining the contact pair surfaces and modeling the delamination interaction within the patch interface is specified using the virtual crack closure technique (VCCT) approach.

Findings

The efficiency of the repair is measured in terms of the J-integral. The effects of delamination initiation, mechanical loading, crack length and patch stacking sequences are presented. It is noted that in mode I, delamination propagation is only significant at node A. The numerical results are in good agreement with those of the analytical solution found in the literature. It is observed that the patch's behavior is strongly dependent on loading, crack size and stacking sequences in terms of reducing the structure's lifespan, especially in the presence of delamination.

Originality/value

The numerical modeling presented by the VCCT approach is highly valuable for studying delamination evolution. The influence of loading, crack size and stacking sequences on repair performance is discussed in this work.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 October 2022

Fei Chong Ng, Aizat Abas, Mohamad Riduwan Ramli, Mohamad Fikri Mohd Sharif and Fakhrozi Che Ani

This paper aims to study the interfacial delamination found in the boundary of the copper/copper-epoxy layers of a multi-layer ceramic capacitor.

Abstract

Purpose

This paper aims to study the interfacial delamination found in the boundary of the copper/copper-epoxy layers of a multi-layer ceramic capacitor.

Design/methodology/approach

The thermal reflow process of the capacitor assembly and the crack propagation from the initial micro voids presented in the boundary, and later manifested into delamination, were numerically simulated. Besides, the cross section of the capacitor assembly was inspected for delamination cracks and voids using a scanning electronic microscope.

Findings

Interfacial delamination in the boundary of copper/copper-epoxy layers was caused by the thermal mismatch and growth of micro voids during the thermal reflow process. The maximum deformation on the capacitor during reflow was 2.370 µm. It was found that a larger void would induce higher vicinity stress, mode I stress intensity factor, and crack elongation rate. Moreover, the crack extension increased with the exerted deformation until 0.3 µm, before saturating at the peak crack extension of around 0.078 µm.

Practical implications

The root cause of interfacial delamination issues in capacitors due to thermal reflow has been identified, and viable solutions proposed. These can eliminate the additional manufacturing cost and lead time incurred in identifying and tackling the issues; as well as benefit end-users, by promoting the electronic device reliability and performance.

Originality/value

To the best of the authors’ knowledge, the mechanism of delamination occurrence in a capacitor during has not been reported to date. The parametric variation analysis of the void size and deformation on the crack growth has never been conducted.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 19 September 2022

Dilruba Yağmur Ertemir and Ecem Edis

Regular inspection and maintenance is recommended to preserve and sustain built cultural heritage. Systematising inspection processes and knowledge on defects, and providing…

Abstract

Purpose

Regular inspection and maintenance is recommended to preserve and sustain built cultural heritage. Systematising inspection processes and knowledge on defects, and providing pictorial guides for evaluating defects is an approach that may facilitate their condition survey. Generating pictorial guides for preliminary visual inspection of Modern Heritage buildings with rendered-painted facade concerning two defects (i.e. crack and efflorescence) is aimed in this study. These guides are thought as aids in determining the defect levels and deciding the necessity of advanced examination and/or maintenance. Analysing briefly the evolution of crack over time in the inspected buildings under environmental conditions of Istanbul (Turkey) is also aimed.

Design/methodology/approach

Preliminary guide generation was based mainly on literature survey on defects, and visual data collection from eight Modern Movement examples in Istanbul. The guides were then refined through systematic visual inspection of three buildings among them. Evolution of crack over time was analysed through a second inspection performed after 2.5 years.

Findings

Visual inspections showed that crack is the commonest defect occurring mostly on projecting structural members, while efflorescence is less in number. Comparison of cracks' visuals taken in the first and second inspections showed that deterioration process is slow.

Originality/value

Modern heritage buildings usually have some characteristic features, which may sometimes lead to accumulation of defects at certain locations or may lead to formation of certain defects. Generating visual guides as a start for an initiative for a comprehensive defects catalogue particular for Modern Movement buildings in line with associated cultural heritage standards may contribute to their preservation by easing the condition surveys.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 27 July 2023

Mas Irfan P. Hidayat, Azzah D. Pramata and Prima P. Airlangga

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth…

Abstract

Purpose

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters.

Design/methodology/approach

To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established.

Findings

The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985.

Research limitations/implications

The models are presented for static multiple crack growth problems. No material anisotropy is observed.

Practical implications

In practical crack-growth analyses, the NN approach provides significant benefits and savings.

Originality/value

The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 August 2023

Yaobing Wei, Xuexue Wang, Jianhui Liu, Jianwei Li and Yichen Pan

Engineering composite laminates/structures are usually subjected to complex and variable loads, which result in interlayer delamination damage. However, damaged laminate may cause…

Abstract

Purpose

Engineering composite laminates/structures are usually subjected to complex and variable loads, which result in interlayer delamination damage. However, damaged laminate may cause the whole structure to fail before reaching the design level. Therefore, the purpose of this paper is to develop an equivalent model to effectively evaluate compressive residual strength.

Design/methodology/approach

In this paper, taking carbon fiber reinforced composite T300/69 specimens as the study object, first, the compressive residual strength under different impact energy is obtained. Then, zero-thickness cohesive elements, Hashin failure criteria and Camanho nonlinear degradation scheme are used to simulate the full-process simulation for compression after edge impact (CAEI). Lastly, based on an improved Whitney–Nuismer criterion, the equation of edge hole stress distribution, characteristic length and compressive residual strength is used to verify the correctness of the equivalent model.

Findings

An equivalent relationship between the compressive residual strength of damaged laminates and laminates with edge hole is established. For T300/69 laminates with a thickness of 2.4 mm, the compressive residual strength after damage under an impact energy of 3 J is equivalent to that when the hole aperture R = 2.25 mm and the hole aperture R = 9.18 mm when impact energy is 6 J. Besides, the relationship under the same size and different thickness is obtained.

Originality/value

The value of this study is to provide a reference for the equivalent behavior of damaged laminates. An equivalent model proposed in this paper will contribute to the research of compressive residual strength and provide a theoretical basis for practical engineering application.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 December 2023

Akash Gupta and Manjeet Singh

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and…

29

Abstract

Purpose

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and statistical analysis using Weibull distribution to characterize the failure behavior of the GFRE composite laminate.

Design/methodology/approach

Fatigue tests were conducted using a tension–tension loading scheme at a frequency of 2 Hz and a loading ratio (R) of 0.1. The tests were performed at five different stress levels, corresponding to 50%–90% of the ultimate tensile strength (UTS). Failure behavior was assessed through cyclic stress-strain hysteresis plots, dynamic modulus behavior and scanning electron microscopy (SEM) analysis of fracture surfaces.

Findings

The study identified common modes of failure, including fiber pullouts, fiber breakage and matrix cracking. At low stress levels, fiber breakage, matrix cracking and fiber pullouts occurred due to high shear stresses at the fiber–matrix interface. Conversely, at high stress levels, fiber breakage and matrix cracking predominated. Higher stress levels led to larger stress-strain hysteresis loops, indicating increased energy dissipation during cyclic loading. High stress levels were associated with a more significant decrease in stiffness over time, implying a shorter fatigue life, while lower stress levels resulted in a gradual decline in stiffness, leading to extended fatigue life.

Originality/value

This study makes a valuable contribution to understanding fatigue behavior under tension–tension loading conditions, coupled with an in-depth analysis of the failure mechanism in GFRE composite laminate at different stress levels. The fatigue behavior is scrutinized through stress-strain hysteresis plots and dynamic modulus versus normalized cycles plots. Furthermore, the characterization of the failure mechanism is enhanced by using SEM imaging of fractured specimens. The Weibull distribution approach is used to obtain a reliable estimate of fatigue life.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 26 July 2023

Jorge Manuel Mercado-Colmenero, M. Dolores La Rubia, Elena Mata-García, Moisés Rodriguez-Santiago and Cristina Martin-Doñate

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured…

Abstract

Purpose

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured using fused filament fabrication. The purpose of this study is to investigate the numerical-experimental mechanical behavior modeling of the recycled polymer, that is, recyclable polyethylene terephthalate (rPET), manufactured by a deposition FFF process under compressive stresses for new sustainable designs.

Design/methodology/approach

In all, 42 test specimens were manufactured and analyzed according to the ASTM D695-15 standards. Eight numerical analyzes were performed on a real design manufactured with rPET using Young's compression modulus from the experimental tests. Finally, eight additional experimental tests under uniaxial compression loads were performed on the real sustainable design for validating its mechanical behavior versus computational numerical tests.

Findings

As a result of the experimental tests, rPET behaves linearly until it reaches the elastic limit, along each manufacturing axis. The results of this study confirmed the design's structural safety by the load scenario and operating boundary conditions. Experimental and numerical results show a difference of 0.001–0.024 mm, allowing for the rPET to be configured as isotropic in numerical simulation software without having to modify its material modeling equations.

Practical implications

The results obtained are of great help to industry, designers and researchers because they validate the use of recycled rPET for the ecological production of real-sustainable products using MEX technology under compressive stress and its configuration for numerical simulations. Major design companies are now using recycled plastic materials in their high-end designs.

Originality/value

Validation results have been presented on test specimens and real items, comparing experimental material configuration values with numerical results. Specifically, to the best of the authors’ knowledge, no industrial or scientific work has been conducted with rPET subjected to uniaxial compression loads for characterizing experimentally and numerically the material using these results for validating a real case of a sustainable industrial product.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 48