Search results

1 – 10 of over 26000
Article
Publication date: 12 June 2024

Yu Qiao, Lirong Jian and Hechang Cai

To overcome the limitations of traditional multi-attribute decision making (MADM) methods, which only provide deterministic rankings of decision objects, this paper proposes a…

Abstract

Purpose

To overcome the limitations of traditional multi-attribute decision making (MADM) methods, which only provide deterministic rankings of decision objects, this paper proposes a novel multi-attribute 3WD model. This model presents three-parameter interval grey number decision-theoretic rough sets (TPIGNDTRSs), aiming to offer a reasoned interpretation of loss functions in grey environments and ensure objective assessment of conditional probabilities.

Design/methodology/approach

Firstly, the traditional equivalence relation is replaced with the probabilistic dominance relation (PDR), categorizing decision objects into two state sets in DTRS for more objective conditional probabilities. Secondly, as the three-parameter interval grey number (TPIGN) introduces the most probable value on the basis of the traditional two-parameter interval grey number, it provides a more comprehensive method for describing grey information. Consequently, integrating TPIGN into DTRS refines the interpretations of loss functions in grey environments. Finally, by utilizing two main sorting techniques, relative kernel and degree of accuracy ranking and possibility ranking, two types of 3WD rules with TPIGNDTRSs, are constructed.

Findings

This study has successfully developed and validated a new multi-attribute 3WD model. The model was tested in two distinct domains: evaluating innovation efficiency in high-tech enterprises and recommending movies in a practical case. The findings reveal that the model can effectively integrate relevant information of high-tech enterprises, provide the government with enterprise-level assessments, and gather consumer preferences to recommend the most suitable movies.

Research limitations/implications

This study treats the loss function as grey information in the 3WD model but overlooks the grey nature of evaluation values, limiting its applicability. Additionally, the model’s reliance on subjective expert judgments and historical data to establish the loss function may affect its objectivity. The implications of this research are that the novel model overcomes traditional MADM limitations, enhancing decision-making quality and efficiency in complex and grey scenarios. The model’s successful application in evaluating high-tech enterprises and recommending movies illustrates its dual value in both theory and practice.

Originality/value

Initially, the model proposed in this study is of significant importance for the development of the 3WD field, as it successfully addresses the challenges of uncertain loss functions and unknown conditional probabilities in grey information environments. Moreover, by integrating the 3WD model with MADM problems, it has broken through the bottlenecks of traditional MADM methods, offering new perspectives and strategies for solving MADM issues. Therefore, this research not only advances theoretical research but also provides powerful tools for practical applications.

Article
Publication date: 16 May 2024

Mohaddese Geraeli and Emad Roghanian

The current research has developed a novel method to update the decisions regarding real-time data, named the dynamic adjusted real-time decision-making (DARDEM), for updating the…

Abstract

Purpose

The current research has developed a novel method to update the decisions regarding real-time data, named the dynamic adjusted real-time decision-making (DARDEM), for updating the decisions of a grocery supply chain that avoids both frequent modifications of decisions and apathy. The DARDEM method is an integration of unsupervised machine learning and mathematical modeling. This study aims to propose a dynamic proposed a dynamic distribution structure and developed a bi-objective mixed-integer linear program to make distribution decisions along with supplier selection in the supply chain.

Design/methodology/approach

The constantly changing environment of the grocery supply chains shows the necessity for dynamic distribution systems. In addition, new disruptive technologies of Industry 4.0, such as the Internet of Things, provide real-time data availability. Under such conditions, updating decisions has a crucial impact on the continued success of the supply chains. Optimization models have traditionally relied on estimated average input parameters, making it challenging to incorporate real-time data into their framework.

Findings

The proposed dynamic distribution and DARDEM method are studied in an e-grocery supply chain to minimize the total cost and complexity of the supply chain simultaneously. The proposed dynamic structure outperforms traditional distribution structures in a grocery supply chain, particularly when there is higher demand dispersion. The study showed that the DARDEM solution, the online solution, achieved an average difference of 1.54% compared to the offline solution, the optimal solution obtained in the presence of complete information. Moreover, the proposed method reduced the number of changes in downstream and upstream decisions by 30.32% and 40%, respectively, compared to the shortsighted approach.

Originality/value

Introducing a dynamic distribution structure in the supply chain that can effectively manage the challenges posed by real-time demand data, providing a balance between distribution stability and flexibility. The research develops a bi-objective mixed-integer linear program to make distribution decisions and supplier selections in the supply chain simultaneously. This model helps minimize the total cost and complexity of the e-grocery supply chain, providing valuable insights into decision-making processes. Developing a novel method to determine the status of the supply chain and online decision-making in the supply chain based on real-time data, enhancing the adaptability of the system to changing conditions. Implementing and analyzing the proposed MILP model and the developed real-time decision-making method in a case study in a grocery supply chain.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Open Access
Article
Publication date: 5 September 2023

Simone Guercini

This paper examines the relationship between marketing automation emergence and the marketers' use of heuristics in their decision-making processes. Heuristics play a role for the…

3215

Abstract

Purpose

This paper examines the relationship between marketing automation emergence and the marketers' use of heuristics in their decision-making processes. Heuristics play a role for the integration of human decision-making models and automation in augmentation processes, particularly in marketing where automation is widespread.

Design/methodology/approach

This study analyzes qualitative data about the impact of marketing automation on the scope of heuristics in decision-making models, and it is based on evidence collected from interviews with twenty-two experienced marketers.

Findings

Marketers make extensive use of heuristics to manage their tasks. While the adoption of new automatic marketing tools modify the task environment and field of use of traditional decision-making models, the adoption of heuristics rules with a different scope is essential to defining inputs, interpreting/evaluating outputs and control the marketing automation system.

Originality/value

The paper makes a contribution to research on the relationship between marketing automation and decision-making models. In particular, it proposes the results of in-depth interviews with senior decision makers to assess the impact of marketing automation on the scope of heuristics as decision-making models adopted by marketers.

Details

Management Decision, vol. 61 no. 13
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 27 May 2024

Li Li and Xican Li

In order to solve the decision-making problem that the attributive weight and attributive value are both interval grey numbers, this paper tries to construct a multi-attribute…

Abstract

Purpose

In order to solve the decision-making problem that the attributive weight and attributive value are both interval grey numbers, this paper tries to construct a multi-attribute grey decision-making model based on generalized greyness of interval grey number.

Design/methodology/approach

Firstly, according to the nature of the generalized gresness of interval grey number, the generalized weighted greyness distance between interval grey numbers is given, and the transformation relationship between greyness distance and real number distance is analyzed. Then according to the objective function that the square sum of generalized weighted greyness distances from the decision scheme to the best scheme and the worst scheme is the minimum, a multi-attribute grey decision-making model is constructed, and the simplified form of the model is given. Finally, the grey decision-making model proposed in this paper is applied to the evaluation of technological innovation capability of 6 provinces in China to verify the effectiveness of the model.

Findings

The results show that the grey decision-making model proposed in this paper has a strict mathematical foundation, clear physical meaning, simple calculation and easy programming. The application example shows that the grey decision model in this paper is feasible and effective. The research results not only enrich the grey system theory, but also provide a new way for the decision-making problem that the attributive weights and attributive values are interval grey numbers.

Practical implications

The decision-making model proposed in this paper does not need to seek the optimal solution of the attributive weight and the attributive value, and can save the decision-making labor and capital investment. The model in this paper is also suitable for the decision-making problem that deals with the coexistence of interval grey numbers and real numbers.

Originality/value

The paper succeeds in realizing the multi-attribute grey decision-making model based on generalized gresness and its simplified forms, which provide a new method for grey decision analysis.

Details

Grey Systems: Theory and Application, vol. 14 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 28 February 2024

Misbah Faiz, Naukhez Sarwar, Adeel Tariq and Mumtaz Ali Memon

Research has shown that business model innovation can facilitate most ventures to innovate and remain competitive, yet there has been limited work on how digital leadership…

Abstract

Purpose

Research has shown that business model innovation can facilitate most ventures to innovate and remain competitive, yet there has been limited work on how digital leadership capabilities influence business model innovation. Building on the dynamic capabilities view, we address this gap by linking digital leadership capabilities with business model innovation via managerial decision-making through provision of grants received by new ventures.

Design/methodology/approach

The study is cross-sectional research. Data have been collected utilizing purposive sampling from 313 founding members of new ventures in high-velocity markets, i.e. from Pakistan. SPSS has been used to conduct the moderated mediation analysis.

Findings

Digital leadership capabilities foster the business model innovation of the new ventures because they enable new ventures to capitalize on digital technologies and create new ways of generating value for the customers and themselves. Moreover, managerial decision-making mediates digital leadership capabilities and business model innovation relationship, whereas, grants moderate the indirect positive effect of digital leadership capabilities on business model innovation via managerial decision-making. The study generates initial evidence on the impact of digital leadership capabilities on business model innovation via managerial decision-making for new ventures. We advance knowledge on new ventures’ business model innovation by deep-diving into dynamic capabilities view and emphasizing digital leadership capabilities as a significant driver for business model innovation.

Originality/value

With the help of dynamic capabilities theory, this study analyzes how new ventures make use of digital leadership capabilities to promote business model innovation.

Details

Journal of Small Business and Enterprise Development, vol. 31 no. 3
Type: Research Article
ISSN: 1462-6004

Keywords

Open Access
Article
Publication date: 13 February 2024

Felipa de Mello-Sampayo

This survey explores the application of real options theory to the field of health economics. The integration of options theory offers a valuable framework to address these…

Abstract

Purpose

This survey explores the application of real options theory to the field of health economics. The integration of options theory offers a valuable framework to address these challenges, providing insights into healthcare investments, policy analysis and patient care pathways.

Design/methodology/approach

This research employs the real options theory, a financial concept, to delve into health economics challenges. Through a systematic approach, three distinct models rooted in this theory are crafted and analyzed. Firstly, the study examines the value of investing in emerging health technology, factoring in future advantages, associated costs and unpredictability. The second model is patient-centric, evaluating the choice between immediate treatment switch and waiting for more clarity, while also weighing the associated risks. Lastly, the research assesses pandemic-related government policies, emphasizing the importance of delaying decisions in the face of uncertainties, thereby promoting data-driven policymaking.

Findings

Three different real options models are presented in this study to illustrate their applicability and value in aiding decision-makers. (1) The first evaluates investments in new technology, analyzing future benefits, discount rates and benefit volatility to determine investment value. (2) In the second model, a patient has the option of switching treatments now or waiting for more information before optimally switching treatments. However, waiting has its risks, such as disease progression. By modeling the potential benefits and risks of both options, and factoring in the time value, this model aids doctors and patients in making informed decisions based on a quantified assessment of potential outcomes. (3) The third model concerns pandemic policy: governments can end or prolong lockdowns. While awaiting more data on the virus might lead to economic and societal strain, the model emphasizes the economic value of deferring decisions under uncertainty.

Practical implications

This research provides a quantified perspective on various decisions in healthcare, from investments in new technology to treatment choices for patients to government decisions regarding pandemics. By applying real options theory, stakeholders can make more evidence-driven decisions.

Social implications

Decisions about patient care pathways and pandemic policies have direct societal implications. For instance, choices regarding the prolongation or ending of lockdowns can lead to economic and societal strain.

Originality/value

The originality of this study lies in its application of real options theory, a concept from finance, to the realm of health economics, offering novel insights and analytical tools for decision-makers in the healthcare sector.

Details

Journal of Economic Studies, vol. 51 no. 9
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 23 November 2023

Ruizhen Song, Xin Gao, Haonan Nan, Saixing Zeng and Vivian W.Y. Tam

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based…

Abstract

Purpose

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based on multi-source heterogeneous data and will enable stakeholders to solve practical problems in decision-making processes and prevent delayed responses to the demand for ecological restoration.

Design/methodology/approach

Based on the principle of complexity degradation, this research collects and brings together multi-source heterogeneous data, including meteorological station data, remote sensing image data, railway engineering ecological risk text data and ecological restoration text data. Further, this research establishes an ecological restoration plan library to form input feature vectors. Random forest is used for classification decisions. The ecological restoration technologies and restoration plant species suitable for different regions are generated.

Findings

This research can effectively assist managers of mega-infrastructure projects in making ecological restoration decisions. The accuracy of the model reaches 0.83. Based on the natural environment and construction disturbances in different regions, this model can determine suitable types of trees, shrubs and herbs for planting, as well as the corresponding ecological restoration technologies needed.

Practical implications

Managers should pay attention to the multiple types of data generated in different stages of megaproject and identify the internal relationships between these multi-source heterogeneous data, which provides a decision-making basis for complex management decisions. The coupling between ecological restoration technologies and restoration plant species is also an important factor in improving the efficiency of ecological compensation.

Originality/value

Unlike previous studies, which have selected a typical section of a railway for specialized analysis, the complex decision-making model for ecological restoration proposed in this research has wider geographical applicability and can better meet the diverse ecological restoration needs of railway projects that span large regions.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 November 2023

Na Zhang, Haiyan Wang and Zaiwu Gong

Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of…

Abstract

Purpose

Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of bull's eye is frequently subjective, and each stage is considered independent of the others. Interference effects between each stage can easily influence one another. To address these challenges effectively, this paper employs quantum probability theory to construct quantum-like Bayesian networks, addressing interference effects in dynamic multi-attribute group decision-making.

Design/methodology/approach

Firstly, the bull's eye matrix of the scheme stage is derived based on the principle of group negotiation and maximum satisfaction deviation. Secondly, a nonlinear programming model for stage weight is constructed by using an improved Orness measure constraint to determine the stage weight. Finally, the quantum-like Bayesian network is constructed to explore the interference effect between stages. In this process, the decision of each stage is regarded as a wave function which occurs synchronously, with mutual interference impacting the aggregate result. Finally, the effectiveness and rationality of the model are verified through a public health emergency.

Findings

The research shows that there are interference effects between each stage. Both the dynamic grey target group decision model and the dynamic multi-attribute group decision model based on quantum-like Bayesian network proposed in this paper are scientific and effective. They enhance the flexibility and stability of actual decision-making and provide significant practical value.

Originality/value

To address issues like stage interference effects, subjective bull's eye settings and the absence of participative behavior in decision-making groups, this paper develops a grey target decision model grounded in group negotiation and maximum satisfaction deviation. Furthermore, by integrating the quantum-like Bayesian network model, this paper offers a novel perspective for addressing information fusion and subjective cognitive biases during decision-making.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 19 October 2023

Rajat Kumar Behera, Pradip Kumar Bala, Prabin Kumar Panigrahi and Shilpee A. Dasgupta

Despite technological advancements to enhance patient health, the risks of not discovering the correct interactions and trends in digital health are high. Hence, a careful policy…

Abstract

Purpose

Despite technological advancements to enhance patient health, the risks of not discovering the correct interactions and trends in digital health are high. Hence, a careful policy is required for health coverage tailored to needs and capacity. Therefore, this study aims to explore the adoption of a cognitive computing decision support system (CCDSS) in the assessment of health-care policymaking and validates it by extending the unified theory of acceptance and use of technology model.

Design/methodology/approach

A survey was conducted to collect data from different stakeholders, referred to as the 4Ps, namely, patients, providers, payors and policymakers. Structural equation modelling and one-way ANOVA were used to analyse the data.

Findings

The result reveals that the behavioural insight of policymakers towards the assessment of health-care policymaking is based on automatic and reflective systems. Investments in CCDSS for policymaking assessment have the potential to produce rational outcomes. CCDSS, built with quality procedures, can validate whether breastfeeding-supporting policies are mother-friendly.

Research limitations/implications

Health-care policies are used by lawmakers to safeguard and improve public health, but it has always been a challenge. With the adoption of CCDSS, the overall goal of health-care policymaking can achieve better quality standards and improve the design of policymaking.

Originality/value

This study drew attention to how CCDSS as a technology enabler can drive health-care policymaking assessment for each stage and how the technology enabler can help the 4Ps of health-care gain insight into the benefits and potential value of CCDSS by demonstrating the breastfeeding supporting policy.

Details

Journal of Systems and Information Technology, vol. 25 no. 4
Type: Research Article
ISSN: 1328-7265

Keywords

1 – 10 of over 26000