Search results

1 – 10 of 249
Article
Publication date: 3 May 2022

Fatemeh Ashouri Mirsadeghi, Enayatollah Moradi Rufchahi and Saeid Zarrabi

The purpose of this study, 3-aminopyridine, 8-aminoquinoline and some new synthesized 2-aminobenzothiazoles were diazotized with nitrosyl sulfuric acid and subsequently coupled…

Abstract

Purpose

The purpose of this study, 3-aminopyridine, 8-aminoquinoline and some new synthesized 2-aminobenzothiazoles were diazotized with nitrosyl sulfuric acid and subsequently coupled with 5-chloro-8-hydroxy quinoline to synthesize the corresponding heteroarylazo dyes 6–13.

Design/methodology/approach

The structures of dyes were characterized by mass, Fourier transform infra red, 1H proton nuclear magnetic resonance and ultra violet-visible spectroscopic techniques. Absorption spectra of the dyes were measured in acetic acid, ethanol, chloroform, acetonitrile, dimethyl formamide and dimethyl sulfoxide and correlated with the nature of the solvents and substituents. The effects of varying pH on the absorption wavelengths of the azo dyes were also studied. In addition, the acidity constants (pKa) of the dyes were determined using the spectrophotometric method in an ethanol-water mixture (80:20, v/v) at 20–23°C. Besides, density functional theory (DFT) calculations were carried out to compare the energies of proposed azo and hydrazone tautomers of the dyes.

Findings

The results showed that the withdrawing chloro groups on the diazo moiety have significant influence (red shift) on the electron absorption spectra of these dyes. In addition, introducing electron withdrawing chloro groups into the benzothiazoles moiety increased the acidic character of dyes.

Originality/value

The synthesized 7-hetroarylazo-5-chloro-8-hydroxy quinoline dyes are new members in the 8-hydroxyquinoline azo dyes family, where very few details regarding the synthesis of such dyes are reported before in the literature. They are unique in terms of synthesis, spectral properties and DFT calculations.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2021

Esra Barim and Feride Akman

This study aimed the synthesis and theoretical/experimental characterization of novel benzofuran-based acrylamide monomer.

Abstract

Purpose

This study aimed the synthesis and theoretical/experimental characterization of novel benzofuran-based acrylamide monomer.

Design/methodology/approach

Novel N-substituted acrylamide monomer, i.e. N-[2–(4-Bromo-benzoyl)-benzofuran-3-yl]-acrylamide (BBFA), was synthesized by reacting (3-Amino-benzofuran-2-yl)-(4-bromophenyl) methanone with acryloylchloride at 0–5oC. Nuclear magnetic resonance (1H-NMR), infrared (FT-IR) and UV-Visible spectrophotometer were used to elucidate the chemical structure of BBFA. Computational studies were performed using the DFT (B3LYP) method on the basis of 6-31 + G (d, p) using Gaussian 09 W and Gauss View 5.0 package in addition to the VEDA program, gauge-independent atomic orbital (GIAO) and time-dependent density functional theory (TD-DFT) methods.

Findings

Molecular geometry and vibration assignments of the BBFA monomer were calculated. The molecular structure of the monomer was examined. Both longest and shortest bonds were determined in the structure. The nucleophilic and electrophilic regions of the monomer were determined. The theoretical spectroscopic data of the monomer were compared with the experimental data; both were consistent with each other. The chemical reactivity of the monomer was also determined.

Originality/value

The synthesized BBFA monomer can be evaluated in many areas; from medicine to industry (such as textiles) owing to the presence of various active functional groups. Indeed, acrylamide copolymers are remarkable materials for polymer science and industry. The data produced in this study is original and adds to the scientific community.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 January 2017

Mohammed Elalaoui Belghiti, Ayssar Nahlé, Abdeslam Ansari, Yasser Karzazi, S. Tighadouini, Yassir El Ouadi, A. Dafali, Belkheir Hammouti and Smaail Radi

This paper aims to study the inhibition effect of 2-pyridinealdazine on the corrosion of mild steel in an acidic medium. The inhibition effect was studied using weight loss…

Abstract

Purpose

This paper aims to study the inhibition effect of 2-pyridinealdazine on the corrosion of mild steel in an acidic medium. The inhibition effect was studied using weight loss, electrochemical impedance spectroscopy, and Tafel polarization measurements.

Design/methodology/approach

Weight loss measurements, potentiodynamic tests, electrochemical impedance spectroscopy, X-ray diffraction and spectral and conformational isomers analysis of A (E-PAA) and B (Z-PAA) were performed were investigated.

Findings

2-pyridinealdazine (PAA) acts as a good inhibitor for the corrosion of steel in 2.0 M H3PO4. The inhibition efficiency increases with an increase in inhibitor concentration but decreases with an increase in temperature.

Originality/value

This paper is intended to be added to the family of azines which are highly efficient inhibitors and can be used in the area of corrosion prevention and control.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 October 2021

Ali A. Ali, Maha Mohammed Elsawy, Salem S. Salem, Ahmed A. El-Henawy and Hamada Abd El-Wahab

Paper aims to preparation of new acid disperse dyes based on thiadiazol derivatives and evaluation of their use as antimicrobial colorants in digital transfer-printing ink…

Abstract

Purpose

Paper aims to preparation of new acid disperse dyes based on thiadiazol derivatives and evaluation of their use as antimicrobial colorants in digital transfer-printing ink formulations for printing onto polyester fabric substrates.

Design/methodology/approach

New disperse dyes based on 1,3,4 - thiadiazol derivative (dyes 1–3) were prepared and evaluated by different analysis then formulated as colored materials in the ink formulations. The viscosity, dynamic surface tension and particle size distribution of the prepared inks were measured. The printed polyester fabric substrates were tested using a variety of tests, including light fastness, washing, alkali perspiration and Crock fastness, as well as depth of penetration. Density-functional theory (DFT) calculations were carried out at the Becke3-Lee-Yang-parr (B3LYP) level using the 6–311** basis set, and the biological activity of the prepared disperse dyes was investigated.

Findings

The obtained results of the physical of the prepared ink revealed that thiadiazol disperse ink is a promising ink formulation for polyester printing and agrees with the quality of the printed polyester fabric. The optimization geometry for molecular structures agreed with the analysis of these compounds. The HOMO/LUMO and energy gap of the studied system were discussed. The molecular docking analysis showed strong interaction with DNA Gyrase and demonstrated to us the high ability of these inks to act as antimicrobial agents.

Practical implications

The prepared inks containing the prepared thiadiazol disperse dye were high-performance and suitable for this type of printing technique, according to the results. The prepared inks resist the growth of microorganisms and thus increase the ink's storage stability.

Originality/value

The prepared disperse dyes based on 1,3,4 - thiadiazol derivative (dyes 1–3) can be a promising colorant in different applications, like some types of paint formulations and as a colorant in printing of different fabric substrates.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 May 2022

Razieh Farahati, Ali Ghaffarinejad and S. Morteza Mousavi-Khoshdel

This paper aims to investigate the corrosion inhibition ability of 4–(4-nitrophenyl) thiazol-2-amine (NPT) on the copper in 1 M HCl.

Abstract

Purpose

This paper aims to investigate the corrosion inhibition ability of 4–(4-nitrophenyl) thiazol-2-amine (NPT) on the copper in 1 M HCl.

Design/methodology/approach

The corrosion inhibitory ability of NPT on the copper in 1 M HCl was studied by electrochemical impedance spectroscopy, scanning electron microscopy and atomic force microscopy. Theoretical calculations (molecular dynamics simulation, density functional theory and the nucleus independent chemical shift [NICS] as aromaticity indicator of the molecule) were also performed.

Findings

The corrosion inhibition efficacy of this compound was about 80%. Nyquist plots display a small arc contributed to the film or oxide layer resistance and a large loop associated with charge transfer resistance. The inhibitor adsorption was under Langmuir’s adsorption model. ΔG0ads values point to the presence of physical and chemical adsorption. Results of quantum chemical calculations showed that NPT has better interaction with copper than NPTH+. NICS of NPT in benzene or thiazole rings was less negative compared to NICS of NPTH+. Thus NPT shows less aromaticity compared with NPTH+, showing NPT can have better interaction with copper than NPTH+. NPT had more negative Eint value and more interactions with the Cu relative to NPTH+, this result was in agreement with the results of quantum chemical calculations.

Originality/value

NPT is an efficient corrosion inhibitor for copper in HCl. Theoretical calculations showed that NPT can have better interaction with copper than NPTH+. The results of the theoretical studies were in good agreement with the experimental studies.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 September 2016

Feride Akman and Nevin Çankaya

This paper aims to synthesise and characterise N-cyclohexylmethacrylamide (NCMA) monomer which contains thermosensitive group. The characterisation of monomer was performed both…

Abstract

Purpose

This paper aims to synthesise and characterise N-cyclohexylmethacrylamide (NCMA) monomer which contains thermosensitive group. The characterisation of monomer was performed both theoretically and experimentally.

Design/methodology/approach

The monomer was prepared by reacting cyclohexylamine with methacryloyl chloride in the presence of triethylamine at room temperature. The synthesised monomer was characterised by using not only Density Functional Theory (DFT) and Hartree–Fock (HF) with the Gaussian 09 software but also fourier transform infrared (FT–IR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy.

Findings

Both the experimental and the theoretical methods demonstrated that the monomer was successfully synthesised. The vibrational frequencies, the molecular structural geometry, such as optimised geometric bond angles, bond lengths and the Mulliken atomic charges of NCMA were investigated by using DFT/B3LYP and HF methods with the 3-21G* basis set. The experimental results were compared with theoretical values. The results revealed that the calculated frequencies were in good accord with the experimental values. Besides, frontier molecular orbitals (FMOs) and molecular electrostatic potential of NCMA were investigated by theoretical calculations at the B3LYP/3–21G* basis set.

Research limitations/implications

Monomer and polymer containing a thermosensitive functional group have attracted great interest from both industrial and academic fields. Their characterisation can provide great opportunities for polymer science by using DFT and HF methods.

Originality/value

The monomer containing a thermosensitive functional group and a various polymer may be prepared by using DFT and HF methods described in this paper. The calculated data are greatly important to provide insight into molecular analysis and then used in technological applications.

Article
Publication date: 17 May 2021

Hong-Yan Yan and Jin Kwon Hwang

The purpose of this paper is to improve the online monitoring level of low-frequency oscillation in the power system. A modal identification method of discrete Fourier transform …

Abstract

Purpose

The purpose of this paper is to improve the online monitoring level of low-frequency oscillation in the power system. A modal identification method of discrete Fourier transform (DFT) curve fitting based on ambient data is proposed in this study.

Design/methodology/approach

An autoregressive moving average mathematical model of ambient data was established, parameters of low-frequency oscillation were designed and parameters of low-frequency oscillation were estimated via DFT curve fitting. The variational modal decomposition method is used to filter direct current components in ambient data signals to improve the accuracy of identification. Simulation phasor measurement unit data and measured data of the power grid proved the correctness of this method.

Findings

Compared with the modified extended Yule-Walker method, the proposed approach demonstrates the advantages of fast calculation speed and high accuracy.

Originality/value

Modal identification method of low-frequency oscillation based on ambient data demonstrated high precision and short running time for small interference patterns. This study provides a new research idea for low-frequency oscillation analysis and early warning of power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 October 2021

Mokhtar Aarabi, Alireza Salehi and Alireza Kashaninia

The purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are…

Abstract

Purpose

The purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.

Design/methodology/approach

Density functional theory (DFT) is used to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.

Findings

Simulation results show very good sensitivity of Pd-doped PEDOT:PSS to ammonia, carbon dioxide and methane, so this structure cannot be used for simultaneous exposure to these gases. Silver-doped PEDOT:PSS structure provides a favorable sensitivity to ammonia in addition to exhibiting a better selectivity. If the experiment is repeated, the sensitivity is increased for a larger concentration of the applied gas. However, the sensitivity will decrease at a higher ratio than smaller concentrations of gas.

Originality/value

The advantages of the proposed sensor are its low-cost implementation and simple fabrication process compared to other sensors. Moreover, the proposed sensor exhibits appropriate sensitivity and repeatability at room temperature.

Details

Sensor Review, vol. 41 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 November 2023

Peyman Aghdasi, Shayesteh Yousefi and Reza Ansari

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are…

66

Abstract

Purpose

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are studied.

Design/methodology/approach

The computed elastic properties based on DFT are used to develop a finite element (FE) model for the monolayer bismuthene in which the Bi-Bi bonds are simulated by beam elements. Furthermore, mass elements are used to model the Bi atoms. The developed FE model is used to compute Young's modulus of monolayer bismuthene. The model is then used to evaluate the buckling force and fundamental natural frequency of the monolayer bismuthene with different geometrical parameters.

Findings

Comparing the results of the FEM and DFT, it is shown that the proposed model can predict Young's modulus of the monolayer bismuthene with an acceptable accuracy. It is also shown that the influence of the vertical side length on the fundamental natural frequency of the monolayer bismuthene is not significant. However, vibrational characteristics of the bismuthene are significantly affected by the horizontal side length.

Originality/value

DFT and FEM are used to study the elastic, vibrational and buckling properties of the monolayer bismuthene. The developed model can be used to predict Young's modulus of the monolayer bismuthene accurately. Effect of the vertical side length on the fundamental natural frequency is negligible. However, vibrational characteristics are significantly affected by the horizontal side length.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 December 2022

Fatimah A.M. Al-Zahrani

The purpose of this study aims to synthesize a novel donor–acceptor dye based on phenothiazine as a donor (D) and nonconjugated spacer was devised and synthesized by condensing of…

Abstract

Purpose

The purpose of this study aims to synthesize a novel donor–acceptor dye based on phenothiazine as a donor (D) and nonconjugated spacer was devised and synthesized by condensing of 2,2'-(1H-indene-1,3(2H)-diylidene) dimalononitrile with aldehyde and the practical synthesis methodology as given in Scheme 1.

Design/methodology/approach

The prepared phenothiazine dye was systematically experimentally and theoretically examined and characterized using nuclear magnetic resonance spectroscopy (1H,13C NMR), Fourier-transform infrared spectroscopy (IR) and high-resolution mass spectrometry. Density functional theory (DFT) and time-dependent density functional theory DT-DFT calculations were implemented to determine the electronic properties of the new dye

Findings

The UV-Vis absorption and fluorescence spectroscopy of the synthesized dye was investigated in a variety of solvents with varying polarities to demonstrate positive solvatochromism correlated with intramolecular charge transfer (ICT). The probe’s quantum yields (Фf) are experimentally measured in ethanol, and the Stokes shifts are found to be in the 4846–9430 cm−1 range.

Originality/value

The findings depicted that the novel (D-π-A) chromophores may act as a significant factor in the organic optoelectronics.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 249