Search results

1 – 10 of 564
Article
Publication date: 10 July 2024

Xu Zhang, Kangjie Tang, Yingyu Wang and Dongying Dong

The purpose objective of this study is to identify the friction coefficient and friction effect in electromagnetic upsetting (EMU) high-speed forming process.

Abstract

Purpose

The purpose objective of this study is to identify the friction coefficient and friction effect in electromagnetic upsetting (EMU) high-speed forming process.

Design/methodology/approach

Based on numerical simulation and upsetting experiment of 2A10 aluminum alloy bar, the friction coefficient between contact surfaces is obtained by combining the fitting displacement distribution function and the electromagnetic-mechanical coupling numerical model, and the influence of friction effect is analyzed.

Findings

The maximum impact velocity and acceleration during EMU are 13.9 m/s and −3.3 × 106 m/s2, respectively, and the maximum strain rate is 7700 s−1. The functional distribution relationship between friction coefficient combination (FS, FD) and characteristic parameters [upper diameter (D1) and middle diameter (D2)] is established. The values of FS and FD are 0.1402 and 0.0931, respectively, and the maximum relative error is 2.39%. By analyzing the distribution of equivalent stress and strain, it is found that plastic deformation has obvious zoning characteristics and there is serious failure concentration in the strong shear zone.

Originality/value

Friction coefficient significantly affects stress or strain distributions in material forming process, but it is difficult to obtain friction coefficients through experimental tests in the high-speed forming process. In this paper, a multi-field coupling numerical model is proposed to determine friction coefficients and applied to the electromagnetic impact loading process (a high-speed forming process).

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0154/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2024

Qiqi Zhang, Weijun Zhen, Quansheng Ou, Yusufu Abulajiang and Gangshan Ma

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization…

Abstract

Purpose

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization of CSO, trimethylolpropane, phthalic anhydride (PA) and trimellitic anhydride (TMA). The prepared resin coating material was subsequently applied to the surface of steel structure material.

Design/methodology/approach

This study aimed to synthesize water-based alkyd resins using CSO. Therefore, the alkyd resin was introduced with TMA containing carboxyl groups and neutralized with triethylamine (TEA) to form a water-soluble salt. Then, the esterification kinetics of CSO water-based alkyd resin were investigated, and finally, the basic properties of CSO water-based alkyd resin coating were evaluated.

Findings

It was demonstrated that CSO water-based alkyd resin exhibited excellent water solubility and that the esterification kinetic of the synthesis reaction could be described by a second-order reaction. The coating properties of the material were investigated and found to have good basic properties, with 40% resin addition having the best corrosion resistance. Consequently, it could be effectively applied to the surface of steel structural materials.

Originality/value

This study not only met the requirement of environmentally friendly development but also expanded the application of CSO through the synthesis of CSO water-based alkyd resin via alcoholysis. Compared to fatty acid process, the alcoholysis reduced the need for fatty acid pre-extraction, simplifying the alkyd resin synthesis process. Thus, economic costs are effectively reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 May 2024

Anand Mohan Pandey, Sajan Kapil and Manas Das

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the…

1200

Abstract

Purpose

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the substrate form metallurgical bonding, so separating them from the substrate is an unsolved issue. Therefore, this paper aims to propose a method for separating the deposited micro parts from a sacrificial substrate. Furthermore, single and multi-bead optimization is performed to fabricate microparts with varying density.

Design/methodology/approach

A typical SJED process consists of a nozzle (to establish a column of electrolytes) retrofitted on a machine tool (to provide relative motion between substrate and nozzle) that deposits material atom-by-atom on a conductive substrate.

Findings

A comprehensive study of process parameters affecting the layer height, layer width and morphology of the deposited micro-parts has been provided. The uniformity in the deposited parts can be achieved with the help of low applied voltage and high scanning speed. Multi-bead analysis for the flat surface condition is experimentally performed, and the flat surface condition is achieved when the centre distance between two adjacent beads is kept at half of the width of a single bead.

Originality/value

Although several literatures have demonstrated that the SJED process can be used for the fabrication of parts; however, part fabrication through multi-bead optimization is limited. Moreover, the removal of the fabricated part from the substrate is the novelty of the current work.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2024

Pranay Vaggu and S.K. Panigrahi

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Abstract

Purpose

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Design/methodology/approach

Projectile shape is one of the important parameters in the penetration mechanism. The present study deals with the failure mechanisms and ballistic evaluation for different nose-shaped projectiles undergoing normal impact with spinning. Materials characterization has been made by Johnson–Cook strength and failure models, and LS-DYNA simulations are used to analyse the impact of steel projectiles on an Al 7075-T651 target at different impact velocities under normal impact conditions. The experimental results from the literature are used to validate the model. Based on the residual velocity values, the Recht-Ipson model has been curve-fitted and approximate ballistic limit velocity has been evaluated. The approximated ballistic limit velocity is found to be 3.4% higher than the experimental results and compared well with the experimental results. Subsequently, the validated model conditions are used to study and analyse the effect of spinning for different nose-shaped projectiles undergoing normal impact conditions.

Findings

The ductile hole failure is observed for the ogive nose projectile, petals are formed and fragmented for the conical projectile, and plugging is observed for cylindrical projectiles. A Recht-Ipson curve is presented for each spinning condition for each projectile shape and the ballistic limit has been evaluated for each condition.

Originality/value

The proposed research outputs are original and innovative and, have a lot of importance in defence applications, particularly in arms and ammunition.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 June 2024

Junseo Bae

The main objectives of this study are to (1) develop and test a cost contingency learning model that can generalize initially estimated contingency amounts by analyzing back the…

Abstract

Purpose

The main objectives of this study are to (1) develop and test a cost contingency learning model that can generalize initially estimated contingency amounts by analyzing back the multiple project changes experienced and (2) uncover the hidden link of the learning networks using a curve-fitting technique for the post-construction evaluation of cost contingency amounts to cover cost risk for future projects.

Design/methodology/approach

Based on a total of 1,434 datapoints collected from DBB and DB transportation projects, a post-construction cost contingency learning model was developed using feedforward neural networks (FNNs). The developed model generalizes cost contingencies under two different project delivery methods (i.e. DBB and DB). The learning outputs of generalized contingency amounts were curve-fitted with the post-construction schedule and cost information, specifically aiming at uncovering the hidden link of the FNNs. Two different bridge projects completed under DBB and DB were employed as illustrative examples to demonstrate how the proposed modeling framework could be implemented.

Findings

With zero or negative values of change growth experienced, it was concluded that cost contingencies were overallocated at the contract stage. On the other hand, with positive values of change growth experienced, it was evaluated that set cost contingencies were insufficient from the post-construction standpoint. Taken together, this study proposed a tangible post-construction evaluation technique that can produce not only the plausible ranges of cost contingencies but also the exact amounts of contingency under DBB and DB contracts.

Originality/value

As the first of its kind, the proposed modeling framework provides agency engineers and decision-makers with tangible assessments of cost contingency coupled with experienced risks at the post-construction stage. Use of the proposed model will help them evaluate the allocation of appropriate contingency amounts. If an agency allocates a cost contingency benchmarked from similar projects on aspects of the base estimate and experienced risks, a set contingency can be defended more reliably. The main findings of this study contribute to post-construction cost contingency verification, enabling agency engineers and decision-makers to systematically evaluate set cost contingencies during the post-construction assessment stage and achieving further any enhanced level of confidence for future cost contingency plans.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 May 2024

Muhammed Kofoğlu, Doruk Erdem Yunus and Necati Ercan

Lattice structures are widely used for achieving optimal topology in additive manufacturing. However, the use of different lattices in a single design can result in stress…

Abstract

Purpose

Lattice structures are widely used for achieving optimal topology in additive manufacturing. However, the use of different lattices in a single design can result in stress concentrations at the transition points. This study aims to investigate the influence of Bezier curves on mechanical properties during the transformation from one lattice structure to another. It specifically focuses on the transition from a hexagonal to diamond lattice, using Bezier curves of various orders.

Design/methodology/approach

The curves were designed by passing them through the same control points for different orders, such as third, fifth and seventh. The samples were sliced for 3D printing, and a tensile test was conducted. Young’s modulus and energy absorption abilities were measured to compare the mechanical properties of the models created with Bezier curves for the transformation between hexagonal and diamond models.

Findings

The analysis revealed a gradual change in mechanical properties from the hexagonal to the diamond lattice. Moreover, different orders of Bezier curves exhibited varying mechanical properties during the transformation between the two lattices. As the order of the Bezier curve increased, the mechanical properties smoothly changed from the hexagonal to diamond lattice. This prevented stress concentrations or mechanical behavior mismatch caused by sudden deformations at the transitions between the curves used in the design.

Originality/value

The study’s innovative use of Bezier curves of different orders to smoothly transformation between hexagonal and diamond lattices in additive manufacturing offers a practical solution to prevent stress concentrations and mechanical inconsistencies during such design transitions.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 July 2024

Bin Li, Shoukun Wang, Jinge Si, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang and Zhi Liu

Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random…

Abstract

Purpose

Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random disturbances, proposing a dynamic target tracking framework for UGVs based on target state estimation, trajectory prediction, and UGV control.

Design/methodology/approach

To mitigate the adverse effects of noise contamination in target detection, the authors use the extended Kalman filter (EKF) to improve the accuracy of locating unmanned aerial vehicles (UAVs). Furthermore, a robust motion prediction algorithm based on polynomial fitting is developed to reduce the impact of trajectory jitter caused by crosswinds, enhancing the stability of drone trajectory prediction. Regarding UGV control, a dynamic vehicle model featuring independent front and rear wheel steering is derived. Additionally, a linear time-varying model predictive control algorithm is proposed to minimize tracking errors for the UGV.

Findings

To validate the feasibility of the framework, the algorithms were deployed on the designed UGV. Experimental results demonstrate the effectiveness of the proposed dynamic tracking algorithm of UGV under random disturbances.

Originality/value

This paper proposes a tracking framework of UGV based on target state estimation, trajectory prediction and UGV predictive control, enabling the system to achieve dynamic tracking to the UAV under multiple disturbance conditions.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 July 2024

Shu Wang and Nathan B. Crane

Powder bed density is a key parameter in powder bed additive manufacturing (AM) processes but is not easily monitored. This research evaluates the possibility of non-invasively…

Abstract

Purpose

Powder bed density is a key parameter in powder bed additive manufacturing (AM) processes but is not easily monitored. This research evaluates the possibility of non-invasively estimating the density of an AM powder bed via its thermal properties measured using flash thermography (FT).

Design/methodology/approach

The thermal diffusivity and conductivity of the samples were found by fitting an analytical model to the measured surface temperature after flash of the powder on a polymer substrate, enabling the estimation of the powder bed density.

Findings

FT estimated powder bed was within 8% of weight-based density measurements and the inferred thermal properties are consistent with literature findings. However, multiple flashes were necessary to ensure precise measurements due to noise in the experimental data and the similarity of thermal properties between the powder and substrate.

Originality/value

This paper emphasizes the capability of Flash Thermography (FT) for non-contact measurement of SS 316 L powder bed density, offering a pathway to in-situ monitoring for powder bed AM methods including binder jetting (BJ) and powder bed fusion. Despite the limitations of the current approach, the density knowledge and thermal properties measurements have the potential to enhance process development and thermal modeling powder bed AM processes, aiding in understanding the powder packing and thermal behavior.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 April 2023

Amina Zahafi, Mohamed Hadid and Raouf Bencharif

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a…

Abstract

Purpose

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a straightforward calculation of foundations’ vertical vibrations. A rigid circular foundation shape resting on a nonhomogeneous half-space subjected to a vertical time-harmonic excitation is considered.

Design/methodology/approach

A simple model representing the soil–foundation system consists of a single degree of freedom (SDOF) system incorporating a lumped mass linked to a frequency-independent spring and dashpot. Besides that, an additional fictitious mass is incorporated into the SDOF system. Several numerical methods and mathematical techniques are used to identify each SDOF’s parameter: (1) the vertical component of the static and dynamic foundation impedance function is calculated. This dynamic interaction problem is solved by using a formulation combining the boundary element method and the thin layer method, which allows the simulation of any complex nonhomogeneous half-space configuration. After, one determines the static stiffness’s expression of the circular foundation resting on a nonhomogeneous half-space. (2) The system’s parameters (dashpot coefficient and fictitious mass) are calculated at the resonance frequency; and (3) using a curve fitting technique, the general formulas of the frequency-independent dashpot coefficients and additional fictitious mass are established.

Findings

Comparisons with other results from a rigorous formulation were made to verify the developed model’s accuracy; these are exceptional cases of the more general problems that can be addressed (problems like shallow or embedded foundations of arbitrary shape, other vibration modes, etc.).

Originality/value

In this new LPM, the impedance functions will no longer be needed. The engineer only needs a limited number of input parameters (geometrical and mechanical characteristics of the foundation and the soil). Moreover, a simple calculator is required (i.e. we do not need any sophisticated software).

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 June 2024

Sudan Liu, Hualiang Huang and Jinbei He

As a commonly engine coolant, ethylene glycol can produce corrosive acid byproducts at high temperatures when the car is running, specifically oxalic acid (OA), which can shorten…

Abstract

Purpose

As a commonly engine coolant, ethylene glycol can produce corrosive acid byproducts at high temperatures when the car is running, specifically oxalic acid (OA), which can shorten the service life of engine. At the same time, chloride ions can also be introduced during coolant preparation processes. Therefore, this paper aims to investigate the synergistic corrosion behavior of Cl and OA on ADC12 aluminum alloy.

Design/methodology/approach

The electrochemical tests, scanning electron microscopy, energy dispersive spectrometer, X-ray diffraction and X-ray photoelectron spectroscopy) were used.

Findings

The results showed that the corrosion rate of the aluminum alloy increased with the increase of OA and Cl concentrations. After adding Cl, the surface film of the aluminum alloy was further damaged, Cl has a synergistic effect with OA and their interaction further accelerated the corrosion of the aluminum alloy. Nevertheless, as the immersion time increased, the corrosion rate of the aluminum alloy gradually diminished due to the formation of aluminum oxalate.

Originality/value

The corrosion of ADC12 aluminum alloy was studied in OA, Cl and their mixed solutions; the synergistic effect of OA and Cl on the corrosion of ADC12 aluminum alloy was discussed, and aluminum oxalate formed inhibited its corrosion.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 564