Search results

1 – 10 of 276
Book part
Publication date: 12 July 2021

Kuok King Kuok, Chiu Po Chan and Sobri Harun

Rainfall–runoff relationship is one of the most complex hydrological phenomena. A conventional neural network (NN) with backpropagation algorithm has successfully modelled various…

Abstract

Rainfall–runoff relationship is one of the most complex hydrological phenomena. A conventional neural network (NN) with backpropagation algorithm has successfully modelled various non-linear hydrological processes in recent years. However, the convergence rate of the backpropagation NN is relatively slow, and solutions may trap at local minima. Therefore, a new metaheuristic algorithm named as cuckoo search optimisation was proposed to combine with the NN to model the daily rainfall–runoff relationship at Sungai Bedup Basin, Sarawak, Malaysia. Two-year rainfall–runoff data from 1997 to 1998 had been used for model training, while one-year data in 1999 was used for model validation. Input data used are current rainfall, antecedent rainfall and antecedent runoff, while the targeted output is current runoff. This novel NN model is evaluated with the coefficient of correlation (R) and the Nash–Sutcliffe coefficient (E2). Results show that cuckoo search optimisation neural network (CSONN) is able to yield R and E2 to 0.99 and 0.94, respectively, for model validation with the optimal configuration of number of nests (n) = 20, initial discovery rate of alien eggs (painitial) = 0.6, hidden neuron (HN) = 100, iteration number (IN) = 1,000 and learning rate (LR) = 1 for CSONND4 model. The results revealed that the newly developed CSONN is able to simulate runoff accurately using only precipitation and runoff data.

Article
Publication date: 6 December 2020

Binghai Zhou, Xiujuan Li and Yuxian Zhang

This paper aims to investigate the part feeding scheduling problem with electric vehicles (EVs) for automotive assembly lines. A point-to-point part feeding model has been…

Abstract

Purpose

This paper aims to investigate the part feeding scheduling problem with electric vehicles (EVs) for automotive assembly lines. A point-to-point part feeding model has been formulated to minimize the number of EVs and the maximum handling time by specifying the EVs and sequence of all the delivery tasks.

Design/methodology/approach

First, a mathematical programming model of point-to-point part feeding scheduling problem (PTPPFSP) with EVs is presented. Because the PTPPFSP is NP-hard, an improved multi-objective cuckoo search (IMCS) algorithm is developed with novel search strategies, possessing the self-adaptive Levy flights, the Gaussian mutation and elite selection strategy to strengthen the algorithm’s optimization performance. In addition, two local search operators are designed for deep optimization. The effectiveness of the IMCS algorithm is verified by dealing with the PTPPFSP in different problem scales.

Findings

Numerical experiments are used to demonstrate how the IMCS algorithm serves as an efficient method to solve the PTPPFSP with EVs. The effectiveness and feasibility of the IMCS algorithm are validated by approximate Pareto fronts obtained from the instances of different problem scales. The computational results show that the IMCS algorithm can achieve better performance than the other high-performing algorithms in terms of solution quality, convergence and diversity.

Research limitations/implications

This study is applicable without regard to the breakdown of EVs. The current research contributes to the scheduling of in-plant logistics for automotive assembly lines, and it could be modified to cope with similar part feeding scheduling problems characterized by just-in-time (JIT) delivery.

Originality/value

Both limited electricity capacity and no earliness and tardiness constraints are considered, and the scheduling problem is solved satisfactorily and innovatively for an efficient JIT part feeding with EVs applied to in-plant logistics.

Details

Assembly Automation, vol. 41 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 November 2020

Femi Emmanuel Ayo, Olusegun Folorunso, Friday Thomas Ibharalu and Idowu Ademola Osinuga

Hate speech is an expression of intense hatred. Twitter has become a popular analytical tool for the prediction and monitoring of abusive behaviors. Hate speech detection with…

Abstract

Purpose

Hate speech is an expression of intense hatred. Twitter has become a popular analytical tool for the prediction and monitoring of abusive behaviors. Hate speech detection with social media data has witnessed special research attention in recent studies, hence, the need to design a generic metadata architecture and efficient feature extraction technique to enhance hate speech detection.

Design/methodology/approach

This study proposes a hybrid embeddings enhanced with a topic inference method and an improved cuckoo search neural network for hate speech detection in Twitter data. The proposed method uses a hybrid embeddings technique that includes Term Frequency-Inverse Document Frequency (TF-IDF) for word-level feature extraction and Long Short Term Memory (LSTM) which is a variant of recurrent neural networks architecture for sentence-level feature extraction. The extracted features from the hybrid embeddings then serve as input into the improved cuckoo search neural network for the prediction of a tweet as hate speech, offensive language or neither.

Findings

The proposed method showed better results when tested on the collected Twitter datasets compared to other related methods. In order to validate the performances of the proposed method, t-test and post hoc multiple comparisons were used to compare the significance and means of the proposed method with other related methods for hate speech detection. Furthermore, Paired Sample t-Test was also conducted to validate the performances of the proposed method with other related methods.

Research limitations/implications

Finally, the evaluation results showed that the proposed method outperforms other related methods with mean F1-score of 91.3.

Originality/value

The main novelty of this study is the use of an automatic topic spotting measure based on naïve Bayes model to improve features representation.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 June 2021

Venkatesh Chapala and Polaiah Bojja

Detecting cancer from the computed tomography (CT)images of lung nodules is very challenging for radiologists. Early detection of cancer helps to provide better treatment in…

Abstract

Purpose

Detecting cancer from the computed tomography (CT)images of lung nodules is very challenging for radiologists. Early detection of cancer helps to provide better treatment in advance and to enhance the recovery rate. Although a lot of research is being carried out to process clinical images, it still requires improvement to attain high reliability and accuracy. The main purpose of this paper is to achieve high accuracy in detecting and classifying the lung cancer and assisting the radiologists to detect cancer by using CT images. The CT images are collected from health-care centres and remote places through Internet of Things (IoT)-enabled platform and the image processing is carried out in the cloud servers.

Design/methodology/approach

IoT-based lung cancer detection is proposed to access the lung CT images from any remote place and to provide high accuracy in image processing. Here, the exact separation of lung nodule is performed by Otsu thresholding segmentation with the help of optimal characteristics and cuckoo search algorithm. The important features of the lung nodules are extracted by local binary pattern. From the extracted features, support vector machine (SVM) classifier is trained to recognize whether the lung nodule is malicious or non-malicious.

Findings

The proposed framework achieves 99.59% in accuracy, 99.31% in sensitivity and 71% in peak signal to noise ratio. The outcomes show that the proposed method has achieved high accuracy than other conventional methods in early detection of lung cancer.

Practical implications

The proposed algorithm is implemented and tested by using more than 500 images which are collected from public and private databases. The proposed research framework can be used to implement contextual diagnostic analysis.

Originality/value

The cancer nodules in CT images are precisely segmented by integrating the algorithms of cuckoo search and Otsu thresholding in order to classify malicious and non-malicious nodules.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 13 August 2018

Goga Vladimir Cvetkovski, Lidija Petkovska and Paul Lefley

The purpose of this paper is to perform an optimal design of a single-phase permanent magnet brushless DC motor (SPBLDCM) by using efficiency of the motor as an objective…

Abstract

Purpose

The purpose of this paper is to perform an optimal design of a single-phase permanent magnet brushless DC motor (SPBLDCM) by using efficiency of the motor as an objective function. In the design procedure of the motor, a cuckoo search (CS) algorithm is used as an optimization tool.

Design/methodology/approach

For the purpose of this research work, a computer program for optimal design of electrical machines based on the CS optimization has been developed. Based on the design characteristics of SPBLDCM, some of the motor parameters are chosen to be constant and others variable. A comparative analysis of the initial motor model and the CS model based on the value of the objective function, as well as the values of the optimization parameters, is performed and presented.

Findings

Based on the comparative data analysis of both motor models, it can be concluded that the main objective of the optimization is realized, and it is achieved by an improvement of the efficiency of the motor.

Practical implications

The optimal design approach of SPBLDCM presented in this research work can be also implemented on other electrical machines and devices using the same or even other objective functions.

Originality/value

An optimization technique using CS as an optimization tool has been developed and applied in the design procedure of SPBLDCM. According to the results, it can be concluded that the CS algorithm is a suitable tool for design optimization of SPBLDCM and electromagnetic devices in general. The quality of the CS model has been proved through the data analysis of the initial and optimized solution. The quality of the CS solution has been also proved by comparative analysis of the two motor models using FEM as a performance analysis tool.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 19 November 2021

Łukasz Knypiński

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation…

1315

Abstract

Purpose

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation optimization processes for permanent magnet motor.

Design/methodology/approach

A comparative performance analysis was conducted for selected MAs. Optimization calculations were performed for as follows: genetic algorithm (GA), particle swarm optimization algorithm (PSO), bat algorithm, cuckoo search algorithm (CS) and only best individual algorithm (OBI). All of the optimization algorithms were developed as computer scripts. Next, all optimization procedures were applied to search the optimal of the line-start permanent magnet synchronous by the use of the multi-objective objective function.

Findings

The research results show, that the best statistical efficiency (mean objective function and standard deviation [SD]) is obtained for PSO and CS algorithms. While the best results for several runs are obtained for PSO and GA. The type of the optimization algorithm should be selected taking into account the duration of the single optimization process. In the case of time-consuming processes, algorithms with low SD should be used.

Originality/value

The new proposed simple nondeterministic algorithm can be also applied for simple optimization calculations. On the basis of the presented simulation results, it is possible to determine the quality of the compared MAs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Xiujie Wang, Jian Liu and Can Ma

The purpose of this study is that on the basis of the competitive edge theory, source mechanism and evaluation approaches of industrial cluster competitiveness, combined with…

2528

Abstract

Purpose

The purpose of this study is that on the basis of the competitive edge theory, source mechanism and evaluation approaches of industrial cluster competitiveness, combined with international trends in the automobile industry and the features of Chinese automobile industrial cluster development, an evaluation index system about cluster competitiveness of auto industry is built with comprehensive consideration of factors such as cluster development environment, external scale effect and internal competitiveness from the perspective of value chain of automobile industry.

Design/methodology/approach

An evaluation index system for automobile industrial cluster competitiveness was realized by integrating current strengths and future growth capacities with multidimensional, dynamic and comprehensive characteristics, which included 3 second-level, 10 third-level and 16 fourth-level indices. In the light of evaluation methods, a group intelligence optimization algorithm – (cuckoo search) – and traditional methods of complex decision-making system – analytic hierarchy process (AHP) – were combined to propose the cuckoo-AHP evaluation method. It was applied for the calculation and optimization of weight values in an automobile industrial cluster competitiveness evaluation index for the purpose of obtaining better scientific and more reliable results.

Findings

The research might further enrich the evaluation theory of automobile industrial cluster competitiveness and also can be useful for showing how traditional evaluation methods can be combined with intelligent algorithms to carry out better automobile industrial cluster competitiveness evaluations. In addition, studies of channels for kick-starting Chinese auto industrial cluster competitiveness are expected to provide references for how to enhance the cluster competitiveness of the Chinese automobile industry.

Practical implications

Changsha and Liuzhou, the Guangxi automobile industrial clusters as the two empirical analysis objects selected for this paper, are geographically adjacent to each other. The automobile industries of the two cities are local pillar industries with the strong support of the local government. Both clusters have their own advantages and weak points with different characteristics of cluster development, and they enjoy a representative significance amongst China’s numerous auto industrial clusters that are taking shape. Comparative analysis of both clusters serves as a good reference for the objective evaluation of the competitiveness of Chinese automobile clusters in terms of their real and practical developments and in respect of the success of reasonable scientific and industrial cluster policies.

Originality/value

Multidimensional, dynamic, integrated evaluation index systems are constructed around automobile industrial cluster competitiveness, which has taken into account developments in current strengths and future growth capacity. The cuckoo-AHP evaluation method has been formed by combining the traditional decision-making method known as AHP with a new meta-heuristic optimization algorithm called “cuckoo search”. Both have been used in evaluations of automobile industrial cluster competitiveness in Liuzhou and Changsha, which will be beneficial for enriching automobile industrial cluster competitiveness evaluation theory and new evaluation methods that will enable better evaluations of automobile industrial cluster competitiveness.

Details

Chinese Management Studies, vol. 10 no. 4
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 20 November 2017

Mohamed Abdel-Basset, Laila A. Shawky and Arun Kumar Sangaiah

The purpose of this paper is to present a comparison between two well-known Lévy-based meta-heuristics called cuckoo search (CS) and flower pollination algorithm (FPA).

Abstract

Purpose

The purpose of this paper is to present a comparison between two well-known Lévy-based meta-heuristics called cuckoo search (CS) and flower pollination algorithm (FPA).

Design/methodology/approach

Both the algorithms (Lévy-based meta-heuristics called CS and Flower Pollination) are tested on selected benchmarks from CEC 2017. In addition, this study discussed all CS and FPA comparisons that were included implicitly in other works.

Findings

The experimental results show that CS is superior in global convergence to the optimal solution, while FPA outperforms CS in terms of time complexity.

Originality/value

This paper compares the working flow and significance of FPA and CS which seems to have many similarities in order to help the researchers deeply understand the differences between both algorithms. The experimental results are clearly shown to solve the global optimization problem.

Details

Library Hi Tech, vol. 35 no. 4
Type: Research Article
ISSN: 0737-8831

Keywords

Open Access
Article
Publication date: 7 August 2017

Ali M. Abdulshahed, Andrew P. Longstaff and Simon Fletcher

The purpose of this paper is to produce an intelligent technique for modelling machine tool errors caused by the thermal distortion of Computer Numerical Control (CNC) machine…

1646

Abstract

Purpose

The purpose of this paper is to produce an intelligent technique for modelling machine tool errors caused by the thermal distortion of Computer Numerical Control (CNC) machine tools. A new metaheuristic method, the cuckoo search (CS) algorithm, based on the life of a bird family is proposed to optimize the GMC(1, N) coefficients. It is then used to predict thermal error on a small vertical milling centre based on selected sensors.

Design/methodology/approach

A Grey model with convolution integral GMC(1, N) is used to design a thermal prediction model. To enhance the accuracy of the proposed model, the generation coefficients of GMC(1, N) are optimized using a new metaheuristic method, called the CS algorithm.

Findings

The results demonstrate good agreement between the experimental and predicted thermal error. It can therefore be concluded that it is possible to optimize a Grey model using the CS algorithm, which can be used to predict the thermal error of a CNC machine tool.

Originality/value

An attempt has been made for the first time to apply CS algorithm for calibrating the GMC(1, N) model. The proposed CS-based Grey model has been validated and compared with particle swarm optimization (PSO) based Grey model. Simulations and comparison show that the CS algorithm outperforms PSO and can act as an alternative optmization algorithm for Grey models that can be used for thermal error compensation.

Details

Grey Systems: Theory and Application, vol. 7 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 8 March 2022

Ridvan Oruc, Tolga Baklacioglu, Onder Turan and Hakan Aydin

The purpose of this paper is to create models that predict exergetic sustainability index (ESI) and environmental effect factor (EEF) values with high accuracy according to…

Abstract

Purpose

The purpose of this paper is to create models that predict exergetic sustainability index (ESI) and environmental effect factor (EEF) values with high accuracy according to various engine parameters.

Design/methodology/approach

In this study, models were created to estimate ESI and EEF sustainability parameters in various flight phases for a business jet with a turboprop engine using the cuckoo search algorithm (CSA) method. The database used for modeling includes the various engine parameters (torque, engine airflow, gas generator speed, fuel mass flow, power and air-fuel ratio) obtained by running a business aircraft engine more than once at different settings and the actual ESI and EEF values obtained depending on these parameters. In addition, sensitivity analysis was performed to measure the effect of engine parameters on the models. Finally, the effect of the CSA number of nest (n) parameter on the model accuracy was investigated.

Findings

It has been observed that the models predict ESI and EEF values with high accuracy. As a result of the sensitivity analysis, it was seen that the air-fuel ratio had a greater effect on the output parameters.

Practical implications

These models are thought to assist in the exergetic environment analysis used to find the greatest losses for turboprop business jets and identify their causes and further improve system performance. Thus, they will be a useful tool to minimize the negative impact of business jet on environmental sustainability.

Originality/value

To the best of the authors’ knowledge, this study stands out in the literature because it is the first exergo-metaheuristic approach developed with CSA for business aircraft engine; moreover, the data set used consists of real values.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 276