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Abstract
Purpose – The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic
algorithms (MAs) based on the investigation of analytical functions and investigation optimization processes
for permanent magnet motor.
Design/methodology/approach – A comparative performance analysis was conducted for selected
MAs. Optimization calculations were performed for as follows: genetic algorithm (GA), particle swarm
optimization algorithm (PSO), bat algorithm, cuckoo search algorithm (CS) and only best individual algorithm
(OBI). All of the optimization algorithms were developed as computer scripts. Next, all optimization
procedures were applied to search the optimal of the line-start permanent magnet synchronous by the use of
themulti-objective objective function.
Findings – The research results show, that the best statistical efficiency (mean objective function and standard
deviation [SD]) is obtained for PSO and CS algorithms. While the best results for several runs are obtained for
PSO and GA. The type of the optimization algorithm should be selected taking into account the duration of the
single optimization process. In the case of time-consuming processes, algorithmswith low SD should be used.
Originality/value – The new proposed simple nondeterministic algorithm can be also applied for simple
optimization calculations. On the basis of the presented simulation results, it is possible to determine the
quality of the comparedMAs.

Keywords Electrical machine, Optimal design, Permanent magnet machine, Finite element method,
Multi-objective optimization, Optimization, Metaheuristic algorithm, Unconstrained problems,
Line-start permanent magnet synchronous motor

Paper type Research paper

1. Introduction
Unconditional optimization algorithms can be divided into deterministic and
nondeterministic methods (Azhir, 2019). Among deterministic methods, there are gradient
free and gradient methods.
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In the case of deterministic algorithms, the global minimum is sought along with successive
search directions. For gradient-free deterministic methods, the search directions are determined
according to rules adopted before beginning the optimization process (Larson et al., 2019). In
this group, it can be listed the following two types of methods: simple search methods
(Rosenbrock and Hooka-Jeevesa methods) and methods with minimization according to search
vector (Powell and Gauss-Seidel methods). However, in the group of gradient methods, the
search direction is created on the basis of the objective function gradient at an actual point. For
the group of gradient methods gradient descent and conjugate gradient method can be
included. All deterministic methods use only a single point to search for the extreme point.

The very rapid development of computer hardware and the increasing computing
capabilities of computers now allow for the performance of design calculations for
electromagnetic devices using finite element analysis models (Arnoux et al., 2015; Bara�nski
et al., 2019; Driesen et al., 2001; Demenko and Stachowiak, 2020; Ibrahim et al., 2019;
Wardach et al., 2018). Simplified lumped models are often replaced by more accurate finite
element method (FEM) models.

FEM models are more complicated than the lumped parameters models. The
mathematical model of electromagnetic devices is described by systems of equations
describing multi-physics phenomena. In such models, the objective function very often
consists of several partial criteria (Knypi�nski, 2021). The partial criteria are established by
the functional parameters of the device, such as force, electromagnetic torque, mass and
efficiency (Mutluer, 2021). The functional parameters are determined on the basis of the
electromagnetic field distribution (Nowak et al., 2015). The accuracy of FEM models
depends on many parameters as follows: mesh density, step time length and assigned
allowable computational error. Therefore, it is very difficult to determine the gradient of the
objective function in FEM models. Gradient methods are not applied to solve optimization
problems described by FEMmodels.

On the other hand, a systematic development of nondeterministic algorithms has been
observed over the past 40 years. One important step in the expansion of such algorithms
was the development of the genetic algorithm (GA) approach (Holland, 1985). Another
important milestone was the development of a mathematical model of herd behavior
(Reynolds, 1987). The following years saw a more rapid development of nondeterministic
algorithms (nowadays called heuristic algorithms). Afterward, the ant colony optimization
(ACO) and particle swarm optimization (PSO) (Colorni et al., 1992; Kennedy and Eberhart,
1995) methods were developed. More intensive development of heuristic algorithms started
in, 2005; it was only then that, many new algorithms were developed. The following
algorithms were designed: the artificial bee colony (ABC), the cuckoo search (CS), the bat
algorithm (BA), the brain storm optimization algorithm (BSO), the gray wolf optimization
algorithm (GWO) and the whale optimization algorithm (WAO) (Basturk and Karaboga,
2006; Yang and Deb, 2009; Shi, 2011; Mirjalili and Lewisa, 2016). The years in which the
selected algorithms were developed are given in Table 1. The latest algorithms are often
referred to as nature inspired optimization algorithms (Xin-She, 2014).

Metaheuristic algorithms (MAs) (this term is used for selected heuristic algorithms) are
very well suited to solving optimization problems where the mathematical models are
described by FEM models (Mutluer et al., 2020). The main advantage of these optimization
algorithms is the use of a group of individuals (particles, bats, cuckoos, wolves, etc). for
searching a global extreme. These individuals can compete or cooperate with each other. In
the case of the MA, it is also easy to attach a constraint function to the optimization
algorithms. The penalty function is often used to solve optimization problems with
constraints (Knypi�nski, 2021; Mutluer et al., 2020).
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This research was inspired by an attempt to identify the best algorithm among several
MAs investigated.

This paper presents an analysis of the performance of selected MAs. Section 2 briefly
characterizes the investigated algorithms. The performance analysis for analytical
benchmark functions is discussed in Section 3. Section 4 presents the application of the
studied algorithms to solve a technical optimization problem. The conclusions are presented
in Section 5.

2. Selected metaheuristic optimization algorithms
2.1 Particle swarm optimization
The PSO algorithm was developed by Kennedy and Eberhart (1995). This approach was
based on the herd behavior of flocks of birds and fish shoals. During the optimization
process, all particles cooperate with each other to find a global extreme point. Each particle j
is a single solution to the problem under analysis and is described by: position vector xj and
velocity vector vj. All particles form a swarm system. Each particle has information about
the positions of the leader xB (the best adapted particle in the swarm), the direction of motion
in the previous iteration vj and the position of self-local best xL. The velocity of the j-th
particle in the k-th time step is calculated as follows (Devarapalli et al., 2021; Knypi�nski and
Nowak, 2013):

vjk ¼ w1v
j
k�1 þ ar1 xj

L �xj
k�1

� �
þ b r1 xG �xj

k�1

� �
(1)

where w1 is the inertia factor, v
j
k�1, x

j
k�1 are vectors of velocity and the position of the j-th

particle at the k-1 time step, respectively, a, b are learning coefficients, r1, r2 are random
numbers from (0, 1).

The particle position vector is determined as follows:

xj
k ¼ xj

k�1 þ vjk (2)

The block diagram of the PSO algorithm is shown in Figure 1.

2.2 Genetic algorithm
In genetic algorithms, the optimization process is implemented by the natural selection
mechanism. Individuals with various adaptations (objective function) to environmental
conditions fight for survival. The optimization process is carried out on a population of

Table 1.
Years of algorithm

establishment

Algorithm Acronym Year

Genetic algorithm GA 1985
Ant colony optimization ACO 1992
Particle swarm optimization PSO 1995
Artificial bee colony ABC 2005
Cuckoo search CS 2009
Bat algorithm BA 2010
Brain storm optimization BSO 2011
Gray wolf optimization GWO 2014
Whale optimization algorithm WOA 2016
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individuals called a generation. In subsequent iterations of the optimization algorithm, i.e.
generations, three genetic operations responsible for improving the average adaptation of
the population are carried out. The following operations are performed: reproduction
(selection), crossover and mutation. To improve the convergence of the GA, the simple
elitism procedure is very often applied (Knypi�nski and Nowak, 2013).

2.3 Bat algorithm
The mathematical model of the BA was developed on the basis of observations of echo-
location properties in small bat species. The optimization procedure was applied in 2010
(Yang, 2010). Each bat represents a single solution to the problem under analysis. All the
bats form a colony. Each bat is described by: velocity vector (vj), position vector (xj),
variable frequency (Fj), pulse emission (rj) and loudness (Aj). The search for the global
extreme takes place by randomly searching a permissible area. The colony leader is
characterized by the best objective function in the k-th iteration.

The position vector for the j-th bat in the k-th iteration is calculated as follows:

xj
k ¼ xj

k� 1 þ vjk� 1 þ Fj xj
k� 1 �xB

� �h i
(3)

Fj ¼ Fmaxb Fmax �Fminð Þ (4)

where xB is the position vector of the best bat in the colony, b is a randomly selected
number from the range (0, 1), Fmin and Fmax are theminimum andmaximum frequencies.

To improve the quality of the optimization process a trial shift of a random bat is
performed in each iteration of the algorithm. The trial position x* near the selected bat is
determined as follows:

x*ð Þjk¼ xj
k þ aAav (5)

where a is a random number from the range (0, 1) andAav is the average loudness of the bat
colony in the k-th time step.

Figure 1.
Block diagram of the
PSO algorithm
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If the trial shift point has a higher value of the objective function than xj
k, then xj

k is
updated by a new x* (Knypi�nski, 2017). The loudnessAj and rate of pulse emission rj for the
j-th BA are determined as follows:

Aj
kþ1 ¼ zAj

k; r
j
kþ1 ¼ r0 1� exp � g jð Þ½ � (6)

where g and z are constant factors of the BA and r0 is the initial value of emission rate.
The block diagram of the BA algorithm is shown in Figure 2 (Knypi�nski, 2017).

2.4 Cuckoo search
The optimization process is carried out on a population of individuals. In the mathematical
model of the algorithm, cuckoo nests and eggs are introduced (Li et al., 2020). Nests are
potential locations where other cuckoos may lay eggs. Eggs, on the other hand, are
acceptable solutions to the problem under analysis. All cuckoos lay their eggs in known
locations – nests.

Figure 2.
Block diagram of the

BA
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In the natural environment, a cuckoo is a breeding predator and will lay eggs in the nests of
foreign birds. If the host birds discover a foreign egg, they may remove it from their own
nest or leave the nest and build a new one in a new location. In the CS algorithm, such
phenomena are taken into account by creating a certain number of new nests in new
locations. This assumption is implemented by creating a number of new nests with
probability pa.

The candidate for the new positions of each j-th nest in the k þ 1 iteration is determined
by the following equation:

xj
kþ1 ¼ xj

k þ ak lð Þ (7)

where a> 0 is the step size scaling factor, k (l ) is the Levy flight coefficient.
The random Levy flight coefficient k (l ) is drawn from the Levy distribution and can be

calculated as follows:

k lð Þ ¼ kl ; 1 < l # 3ð Þ (8)

2.5 Only best individual algorithm
The only best individual (OBI) method was developed by the author to present the
importance of a group leader in the heuristic optimization process during a lecture given to
students in the last semester of their master’s degree. This is a very simple optimization
method that can be compared to other metaheuristic methods. The optimization process is
carried out on a group of individuals. The position of the leader (the best adapted individual)
of each iteration must be known. The position of the j-th individual at the k-th time step is
determined as follows:

xj
k ¼ xj

k� 1 þ r1ak xj
k�1 �xB

� �
(9)

where r1 is the random number from range (0, 1), a is the coefficient that depends on the
iteration number.

At the beginning of the optimization process, the larger values of the coefficient are
adopted. The optimization algorithm is more of a global search algorithm. During the
process, the value of this coefficient is reduced. The value of the coefficient is determined
according to the following formula (Knypi�nski et al., 2020):

ak ¼ a1 þ a2e� k (10)

where a1, a2 are constant factors.
The part of the algorithm discussed above causes all individuals to move toward the

leader. If the analyzed objective function has several extremes, it is very easy to get stuck at
a local extreme point. To improve the convergence of the algorithm, several new individuals
are generated. The number of new individuals in the OBI algorithm is defined as NN. The
location point of each of theNN individuals is calculated as follows:

xj
k ¼ xr þ r2b xr �xBð Þ (11)
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where xr is the randomly generated location of an individual, r2 is the random number from
range (0, 1) and b is the constant factor.

The values of the objective functions are determined for all individuals at the end of each
iteration. Then, theNN number of the worst individuals is eliminated.

The block diagram of the OBI algorithm is shown in Figure 3.

3. Convergence analysis of selected metaheuristic algorithms using analytical
functions
To carry out performance analysis, all developed optimization procedures were used to
determine the minima of two analytical functions. Two test functions are used to analysis
the performance of algorithms, namely, the Rosenbrock function and the Himmelblau
function.

The Rosenbrock function is defined by the following equation:

f1ðx1; x2Þ ¼ 1� x1ð Þ2 þ 100ðx2 � x21Þ2 (12)

where x1 is in the range (�2.0, 2.0), x2 is in the range (�1.5, 3.0).
Rosenbrock function has one global minimum equal to 0 at points x1 = 1 and x2 = 1.

Determining a global minimum inside a long flat “Rosenbrock” valley is very difficult.
Himmelblau function is a multi-modal test function with four local minima and one

global maximum. The four local minima are equal to 0 and have the following coordinates:

Figure 3.
Block diagram of the

OBI algorithm

START

Random generation of the position of the individuals

Stop critera STOP
YESNO

Evaluation of all individuals according to 
objective function

j=j+1

Determination of the position of a leader XB

Determination of the new position of individuals 
by equation (8)

Calculation the a coefficient by equation (9)

Generation of NN individuals by equation (10)

Determination of the obfective function for 
new individuals

Removal of NN of the worst individuals

k=k+1
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(3,2), (�2.80511, 3.13131), (�3.7793, �3.28318) and (3.58442, �1.84812). The maximum at
point x1 = 0.2708 and x2 = �0.9230 is equal to 181.617. The Himmelblau function is
described by the following equation:

f2 x1; x2ð Þ ¼ x12 þ x2 � 11
� �2 þ x1 þ x22�7

� �2
(13)

where x1 is in the range (�6.0, 6.0), x2 is in the range (�6.0, 6.0).
All the studied optimization procedures were developed by the author in the Borland

Delphi 7.0 and Python environments. All optimization procedures were developed by the
authors. The coefficients for each optimization were selected on the basis of many trial
calculations during the investigation in the previous research works (Knypi�nski and Nowak,
2013; Knypi�nski et al., 2017; Knypi�nski, 2017; Knypi�nski et al., 2021). Optimization
procedures containing each method (PSO, GA, BA, CS and OBI) were repeated 20 times. In
each case under analysis, the number of individuals was N = 50 and the maximum number
of iterations kmax = 40 was adopted as a stop criterion. The analysis was deliberately
performed for a smaller number of individuals. The following values of the PSO coefficients
were used: w = 0.2, a = 0.35 and b = 0.45. The values of the PSO coefficients were assumed
on the basis of many computer simulations to ensure good convergence of the optimization
procedure. Next, calculations were performed for the GA procedure for the probability of
mutation pm = 0.006. The optimization procedure consists of the following three genetic
operators: reproduction, crossover and mutation (Knypi�nski and Nowak, 2013).
Additionally, a simple elitism procedure was used to save the best individual during genetic
operations, especially the mutation procedure. The roulette wheel of reproduction and one
cut-point in chromosome crossover methods were applied. An improved crossover
procedure was also applied (Knypi�nski, 2021). The values of the parameters for the BA
procedure were assumed according to the previous experiment (Knypi�nski, 2017). The
following values were adopted: frequency range Fmin = 0, Fmax = 1.0, initial pulse emission
value r0 = 0, initial loudness value A0 = 1, j = 0.75 and g = 0.5. For the CS procedure, the
following parameters were defined: number of cuckoos equal to N = 50, number of nests
equal to n = 62 and probability pa = 0.25. For the OBI procedure the following parameters
were assumed: a1 = 0.3, a2 = 2.0, b = 0.5 andNN = 5. The value of the coefficient depends on
the defined ranges of design variables. For the OBI algorithm, the coefficients were selected
on the basis of a number of simulation calculations.

3.1 Calculation for f1 function
Calculations were performed for the f1(x1, x2) function. The optimization script was run 20
times for each optimization procedure. The results obtained are presented in Table 2. The
respective columns list the value of the objective function for the best result, the worst
solution, and the average value of the objective function, population variance (PV) for all the
obtained solutions together with the standard deviation (SD).

Table 2.
Statistical data for
different
optimization
algorithms for the
Rosenbrock function

Algorithm Best Worst Mean PV SD

PSO 1.29E-05 9.13E-03 1.77E-03 0.098E-03 3.28E-03
GA 4.50E-04 73.6E-03 27.1E-03 0.51E-03 23.9E-03
BA 6.76E-04 80.3E-03 22.5E-03 0.78E-03 29.4E-03
CS 3.96E-04 36.8E-03 6.95E-03 0.11E-03 10.6E-03
OBI 3.11E-05 52.0E-03 5.82E-03 0.21E-03 15.4E-03
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Figure 4 presents a plot of average loudness (A) and average rate emission (r) values for
selected iterations. The convergence process for all the studied algorithms (the best
optimization process) is presented in Figure 5.

It can be observed, that all the optimization procedures (PSO, GA, BA, CS and OBI)
correctly determined a point near the global minimum. The investigated function is
quite difficult, a large area of Rosenbrock’s “valley” is very much flattened. The
optimization processes required the following number of call functions, i.e. number of
calculations of the objective function: PSO = 2,000, GA = 4,108, BA = 2,000, CS = 1,778
and OBI = 2,201. The best result was obtained for the PSO and OBI algorithms. The
lowest quality of all the statistical data was obtained for the BA. Also, the best SD was
obtained for the PSO algorithm.

3.2 Calculations for f2 function
Next, the calculations were performed for the f2(x1, x2) function. The results are shown in
Table 3.

In the case of the multi-extreme function, the best results were obtained for the GA and
CS algorithms. However, the best SD is achieved in the CS procedure. It can be noted, that
the GA algorithm has a relatively high standard deviation and mean for both analyzed
functions. Such results are due to the fact that the number of individuals in the population is

Figure 4.
Plot ofAav and rav for
selected iterations of

BA

Figure 5.
Change in the value
of the f1 function for
the best individuals
for the investigated

algorithms
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too small. Thus, it can be concluded, that both functions are difficult for the BA algorithm.
Bats moving randomly in search of space can find points near different local minima in
successive time steps.

4. Optimization of line-start permanent magnet synchronous
To analyze the efficiency of the selected algorithms, the optimization of a line-start
permanent magnet synchronous (LSPMSM) motor was performed. The selected
optimization procedures under analysis were connected with a mathematical model of the
LSPMSM. Themodel was developed usingMaxwell software.

The main objective of the optimization process was to design a new rotor structure
for the stator of an induction motor. In new designs of electric motors, especially PM
motors, the steady-state parameters are very important (Kim et al., 2009). In the case of
the LSPMSM, transient parameters, such as starting torque and synchronization
capability should also be considered. By considering only steady-state parameters in
the objective function, degradation of transient parameters can be observed (Baek et al.,
2011). The transient parameters can be regarded as constraints for the optimal design.
They can also be taken into account in a multi-objective function, as additional
components.

The LSPMSM was described by the following four design variables: r is the distance
between poles, l is the length of the permanent magnet, g is the thickness of the permanent
magnet and N is the number of turns in the stator slot. The structure of the motor is
presented in Figure 6. The motor may be used to drive crane equipment in the future, so it
should be characterized by a high starting torque. The shape of the rotor bars was selected
to ensure a significant value of starting torque.

The multi-objective (Arsyad et al., 2021) function consists of two components
representing the steady-state parameters and transient parameters. The objective function
has the following form:

Figure 6.
LSPMSM
construction with
marked design
variables

Table 3.
Statistical data for
different
optimization
algorithms for the
Himmelblau function

Algorithm Best Worst Mean PV SD

PSO 4.419E-3 0.363256 0.081733 0.726E-3 0.092668
GA 1.128E-3 0.271591 0.077230 0.623E-3 0.089039
BA 9.475E-3 0.277210 0.093658 0.986E-3 0.093954
CS 3.532E-3 0.064641 0.033158 0.518E-3 0.023714
OBI 3.657E-3 0.323527 0.080921 1.141E-3 0.114747
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f l; g; r; Nð Þ ¼ l
h l; g; r; Nð Þ

h 0

� �
cosw l; g; r; Nð Þ

cos0w

� �" #

þ v
TS l; g; r; Nð Þ

T0
S

 !
T80 l; g; r; Nð Þ

T0
80

 !2
4

3
5 (14)

where h (l, g, r,N), cosw (l, g, r,N),TS (l, g, r,N) andT80 (l, g, r,N) are the values of efficiency,
power factor, starting torque and electromagnetic torque for a speed equal to 80% of the
synchronous speed; accordingly, h 0, cos0w , T0

S and T0
80 are the mean values of these

parameters for the initial population and l ,v are the weighting factors.
The calculation was performed for the four-pole LSPMSM with power PN = 3 kW. The

motor was supplied from a three-phase grid with a mains voltage equal to UN = 400 V. The
design parameters of the motor are as follows: stator outer diameter DS = 154mm, stator
inner diameter Di = 95mm and rotor outer diameter do = 94mm. The number of stator slots
is equal toNs= 36 while the number of slots in the rotor isNr= 28.

Optimization calculations were performed for the PSO, AG, CS and OBI algorithms. Due to
achieving the worst results during the analysis of the analytical function, the BA algorithm
was not applied. The optimization process for each algorithm was carried out 10 times for
independent starting populations. The calculations were performed for 38 individuals per
population. The maximum number of iterations was 30. The values of the objective function
weighting parameters (l and v ) were selected based on many trial calculations using Excel.
During the optimization process, the coefficient was declared: l = 0.63 andv = 0.37.

The mathematical model consisted of the following two independent models describing:
steady-state and transient state during the start-up process of the motor. To obtain all
parameters used in the objective function for one individual/particle/cuckoo, both models
must be calculated. The optimization calculation was made on the computer equipped with
AMD Ryzen 5 processor and 16 GB RAM. The total calculation time for one call of the
objective function is about 3min. The results of computer calculations are presented in
Table 4.

Based on the obtained results, it can be concluded that the efficiency and power factor
values are similar for all the analyzed algorithms. Two possible solutions for the permanent
magnet length are obtained, i.e. l ffi 54 mm (PSO, CS) or l ffi 49 mm (AG, OBI). Also, similar
values of r parameters are obtained for the same optimization algorithms. The best values of
parameters in the transient state are obtained using the CS algorithm. The best steady-state
parameters are obtained using the PSO algorithm.

5. Conclusions
The efficiency analysis of selected metaheuristic optimization algorithms was compared. In
the first stage, calculations for two analytical functions were made. The number of

Table 4.
Results of simulation

calculations for
different

optimization
algorithms

Algorithm r [mm] g [mm] l [mm] N h [%] cosw Ts [Nm] T80 [Nm]

PSO 9.39 2.64 54.12 41 93.04 0.998 22.35 80.54
AG 11.51 2.91 49.29 41 93.53 0.981 23.45 82.62
CS 9.86 2.68 54.26 41 93.19 0.985 24.46 83.06
OBI 11.49 2.91 49.39 41 93.39 0.987 22.19 80.48
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individuals of the studied algorithms was not large. The number of individuals used was
deliberately kept small; due to the frequent use of the finite element mathematical model for
the optimal design of electromagnetic devices, the total calculation time is very long. Very
often, researchers look for a compromise between the calculation time and the accuracy
(quality) of the optimal result. The calculation time can be reduced by its: application to
models with a lower grid density or application of a smaller number of individuals and a
smaller number of iterations.

Depending on the type of function analyzed (single-objective or multi-objective), the best
results were obtained for the PSO and GA methods, respectively. The best mean value was
obtained for the PSO and CS. Also, the best standard deviations were obtained for the PSO
and CS. The BA algorithm had the worst statistical results among the analyzed algorithms.

In the case of the LSPMSM optimization problem, the results obtained were similar.
Admittedly, it can be observed that the two preferred vectors of design variables were
obtained by the optimization algorithms. After a thorough analysis of the obtained results, it
can be concluded that a large number of available algorithms can lead to similar solutions in
the case of a real technical object, and thus extend the total calculation time of the
optimization procedure significantly. With this in mind, before starting any design
calculations, the correct optimization procedure should be selected.
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