Search results

1 – 5 of 5
Article
Publication date: 13 April 2023

Xing Gao, Z.J. Zhang, Hong Wei, Xu Zhou, Quan Shi, Yang Wu and Lei Da Chen

Solder bumps for chip interconnections are downsizing from current approximately 100 µm to the expected 1 µm in future. As a result, the Cu-Ni cross-interaction in Cu/Solder/Ni…

Abstract

Purpose

Solder bumps for chip interconnections are downsizing from current approximately 100 µm to the expected 1 µm in future. As a result, the Cu-Ni cross-interaction in Cu/Solder/Ni solder joints will be more complicated and then strongly influence the growth of the intermetallic compounds (IMCs). Thus, it is critical to understand the fundamental aspects of interfacial reaction in micro solder joints. This paper aims to reveal the effect mechanism of reflow temperature and solder size on the interfacial reaction in Cu/Solder/Ni solder joints.

Design/methodology/approach

The Cu-Ni cross-interaction in the Cu/Sn/Ni micro solder joints with 50 and 100 µm solder sizes at 250°C and 300°C were observed, respectively. The line-type interconnects were soaked in silicone oil, and the temperature of the line-type interconnects was 250 ± 3°C and 300 ± 3°C, which were monitored by a fine K-type thermocouple, and followed by an isothermal aging process at various times. After aging, the specimens were removed from the silicone oil and cooled in the air to room temperature.

Findings

The major interfacial reaction product on both interfaces was (Cu,Ni)6Sn5, and the asymmetric growth of (Cu,Ni)6Sn5, evidenced by the thickness of (Cu,Ni)6Sn5 IMCs at the Sn/Ni interface was always larger than that at the Sn/Cu interface, resulted from the directional migration of Cu atoms toward the Sn/Ni interface under Cu concentration gradient. The morphology of (Cu,Ni)6Sn5 IMC at Sn/Cu interface was columnlike at 250°C, and which changed from columnlike to scallop with large aspect ratio at 300°C, while that at Sn/Ni interface gradually evolved from needlelike to the mixture of needlelike and layered at 250°C, and which evolved from needlelike to scallop with large aspect ratio at 300°C. The evolution of morphology of (Cu,Ni)6Sn5 is attributed to the content of Ni. Furthermore, the results indicate that the Cu-Ni cross-interaction was stronger with small solder size and relatively low temperature in the Cu/Sn/Ni micro solder joints.

Originality/value

The asymmetric growth of (Cu,Ni)6Sn5 in the Cu/Sn/Ni micro solder joints, evidenced by the thickness of (Cu,Ni)6Sn5 IMCs at the Sn/Ni interface, was always larger than that at the Sn/Cu interface. The morphology evolution of (Cu,Ni)6Sn5 IMC at both interfaces was attributed to the content of Ni. The Cu-Ni cross-interaction was stronger with small solder size and relatively low temperature in the Cu/Sn/Ni micro solder joints.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 September 2015

Ye Tian, Justin Chow, Xi Liu and Suresh K. Sitaraman

The purpose of this paper is to study the intermetallic compound (IMC) thickness, composition and morphology in 100-μm pitch and 200-μm pitch Sn–Ag–Cu (SAC305) flip-chip…

Abstract

Purpose

The purpose of this paper is to study the intermetallic compound (IMC) thickness, composition and morphology in 100-μm pitch and 200-μm pitch Sn–Ag–Cu (SAC305) flip-chip assemblies after bump reflow and assembly reflow. In particular, emphasis is placed on the effect of solder joint size on the interfacial IMCs between metal pads and solder matrix.

Design/methodology/approach

This work uses 100-μm pitch and 200-μm pitch silicon flip chips with nickel (Ni) pads and stand-off height of approximately 45 and 90 μm, respectively, assembled on substrates with copper (Cu) pads. The IMCs evolution in solder joints was investigated during reflow by using 100- and 200-μm pitch flip-chip assemblies.

Findings

After bump reflow, the joints size controls the IMC composition and dominant IMC type as well as IMC thickness and also influences the dominant IMC morphology. After assembly reflow, the cross-reaction of the pad metallurgies promotes the dominant IMC transformation and shape coarsened on the Ni pad interface for smaller joints and promotes a great number of new dominate IMC growth on the Ni pad interface in larger joints. On the Cu pad interface, many small voids formed in the IMC in larger joints, but were not observed in smaller joints, combined with the drawing of the IMC growth process.

Originality/value

With continued advances in microelectronics, it is anticipated that next-generation microelectronic assemblies will require a reduction of the flip-chip solder bump pitch to 100 μm or less from the current industrial practice of 130 to150 μm. This work shows that as the packaging size reduced with the solder joint interconnection, the solder size becomes an important factor in the intermetallic composition as well as morphology and thickness after reflow.

Details

Soldering & Surface Mount Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 February 2011

Bo Wang, Fengshun Wu, Yiping Wu, Bing An, Hui Liu and Jian Zou

The purpose of this paper is to identify the solder joint with optimal mechanical properties among Cu/Sn/Cu, Ni/Sn/Ni and Cu/Sn/Ni solder joints.

Abstract

Purpose

The purpose of this paper is to identify the solder joint with optimal mechanical properties among Cu/Sn/Cu, Ni/Sn/Ni and Cu/Sn/Ni solder joints.

Design/methodology/approach

Solder joints with the same specimen shape were prepared by reflow. The microstructures were observed and analyzed by scanning electron microscopy and tensile testing was carried out to investigate the mechanical properties.

Findings

The mechanical properties of solder joint correlate closely with the intermetallic compounds (IMC) layer structure and the dissociative IMC particles in the solder bulk. Under the influence of the opposite Cu bar, the Cu/Sn/Ni has a duplex IMC layer structure at the Ni side, involving a thin Ni‐Cu‐Sn IMC layer and a faceted (Cu,Ni)6Sn5 layer. The mechanical connection of the duplex IMC layers is weak due to the pores in the layers. The Cu/Sn/Ni fractures in the IMC layers in a brittle mode under tensile testing. Comparatively, the Ni/Sn/Ni also has duplex Ni3Sn4 layers, and they connect firmly with each other. The tensile fracture of the Ni/Sn/Ni occurs in the solder bulk in a ductile mode, as well as for the Cu/Sn/Cu. Compared with the Cu/Sn/Cu solder bulk, the solder bulk of the Ni/Sn/Ni and the Cu/Sn/Ni have higher ultimate tensile strengths, because the strengthening effect of the dissociative Ni3Sn4 and (Cu,Ni)6Sn5 particles on the solder bulk is stronger than that of the Cu6Sn5 particles. Among Cu/Sn/Cu, Ni/Sn/Ni and Cu/Sn/Ni, Ni/Sn/Ni has the optimal mechanical properties.

Originality/value

The paper offers insights into the significant influence of base material matching on the microstructure and mechanical properties of solder joints.

Details

Soldering & Surface Mount Technology, vol. 23 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 10 April 2009

Ning Zhao, Hai‐tao Ma and Lai Wang

The paper aims to investigate the interfacial reactions between two Sn‐Cu based multicomponent Pb‐free solders, Sn‐2Cu‐0.5Ni and Sn‐2Cu‐0.5Ni‐0.5Au (wt per cent), and Ni…

Abstract

Purpose

The paper aims to investigate the interfacial reactions between two Sn‐Cu based multicomponent Pb‐free solders, Sn‐2Cu‐0.5Ni and Sn‐2Cu‐0.5Ni‐0.5Au (wt per cent), and Ni substrates during soldering and aging.

Design/methodology/approach

Differential scanning calorimetry (DSC) was performed to measure the melting behaviors of the solders and determine the temperature of soldering. DSC tests showed that the onset temperature were 227.47 and 224.787°C for Sn‐2Cu‐0.5Ni and Sn‐2Cu‐0.5Ni‐0.5Au, respectively. Two intermetallic compounds (IMCs), Cu6Sn5 and (Cu,Ni)6Sn5, were formed in Sn‐2Cu‐0.5Ni solder. While the IMCs detected in Sn‐2Cu‐0.5Ni‐0.5Au matrix were (Cu,Ni)6Sn5, (Cu,Au)6Sn5 and (Cu,Ni)6Sn5. The IMC layer formed at the both solder/Ni interfaces was (Cu,Ni)6Sn5 with stick‐lick morphology after soldering at 260°C.

Findings

The interfacial IMC layers became planar when aged at 170°C for 500 h. However, cracks were found in the IMC layers at both joints when the aging time reached 1,000 h, that implies reliability problem may exist in the joints. Moreover, Au‐containing IMCs were found on the top of the IMC layer in Sn‐2Cu‐0.5Ni‐0.5Au/Ni joint after for 1,000 h.

Originality/value

This study focuses on the interfacial reactions of Sn‐2Cu‐0.5Ni/Ni and Sn‐2Cu‐0.5Au/Ni during soldering and isothermal aging.

Details

Soldering & Surface Mount Technology, vol. 21 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 September 2023

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Atiqah A., Azman Jalar, Muhamed Abdul Fatah Muhamed Mukhtar and Fakhrozi Che Ani

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Abstract

Purpose

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Design/methodology/approach

The fine-pitch stencil used in this work is fabricated by electroform process and subsequently nano-coated using the PVD process. Stencil printing process was then performed to print the solder paste onto the printed circuit board (PCB) pad. The solder paste release was observed by solder paste inspection (SPI) and analyzed qualitatively and quantitatively. The printing cycle of up to 80,000 cycles was used to investigate the life span of stencil printing.

Findings

The finding shows that the performance of stencil printing in terms of solder printing quality is highly dependent on the surface roughness of the stencil aperture. PVD-coated stencil aperture can prolong the life span of stencil printing with an acceptable performance rate of about 60%.

Originality/value

Stencil printing is one of the important processes in surface mount technology to apply solder paste on the PCB. The stencil’s life span greatly depends on the type of solder paste, stencil printing cycles involved and stencil conditions such as the shape of the aperture, size and thickness of the stencil. This study will provide valuable insight into the relationship between the coated stencil wall aperture via PVD process on the life span of fine-pitch stencil printing.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 5 of 5